
Extended Syracuse sequences (3n+1, 3n+b, 5n+1,...) :
Proofs of the different conjectures

Jacques BALLASI

Version 3.1

Abstract

First, we will list a set of definitions, a practical summary to facilitate the reading of the document.

We will state the different theorems that we will prove in this document.

We will first study the extensions of the Syracuse sequence defined as follows : if  is odd then  (with 

odd,  for the standard case)
If, at first, we focus on the classical Syracuse conjecture, we can ignore the texts written in green which globally correspond
to the extension .

We will retrieve Shalom Eliahou's result (the link between the minimum length of a non-trivial cycle and the maximum value
for which the conjecture has been verified) in another way, using a JGL boundary transition list, which will serve us for the
following reasoning.
The section V, the most delicate and the longest, which mathematically proves this result observed by calculations, can be
ignored at a first reading.

Thanks to a new Theorem, we will be able to prove that the elements of a non-trivial cycle are necessarily in an interval that
we will specify.

We can then easily conclude that there are no non-trivial cycles, the lower bound of this interval being greater than the
maximum possible value for having a cycle.
A similar reasoning will allow us to conclude that there is no divergence towards infinity.
The theoretical results of the method are consistent with the tests and also with the Eric Roosendaal's list of records found up
to that date.

To verify the robustness of the method, we will study the case  and prove that there is at least one value for
which the sequence diverges.

The proofs, which can be improved, only use fairly simple mathematical reasoning and can be understood in the smallest
details by many interested people, with everyone certainly able to understand the main points.

The purpose of the document will be achieved, but, to go further, I have stated my own conjecture !

Note concerning the English part of the document :

I'm French-speaking and the English version of the document was obtained in "my" very approximate English or using the
offline "Google Translate" application.
Knowing that online translation is certainly much better and given the very rapid evolution of the quality of translations in
general, it is certainly better to launch the online translation of the French part of the document.
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Note regarding PDF documents :

The HTML documents were written using the formal web editing tools I developed in the early 2000s (perhaps even before the projects that led to
Mathjax).
The rendering has not been updated for over 15 years and browser characteristics have changed a bit in the meantime, therefore there are a few
inaccuracies in the placement of the indices (which could be corrected)
Converting from HTML to PDF format to obtain a static document further degrades the quality (missing fraction bars) and increases the file size.
The proofs are quite short, about 70 pages. The results at the end of the file represent the largest part of the file, about 500 pages.
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Switch to the proof for the standard sequence
Choose the value of b1 :  OK  (odd integer)

Switch to proof of the minimum length of a cycle

I. Definitions
a. The Syracuse sequence (extended) : 
b. The reduced (extended) Syracuse sequence : 
c. Trajectory of length  or transition list  for :
d. The approximated reduced Syracuse sequence : 
e. Notations

 = 

 the kth defect approximation of 

Inequality (In-1)

, old notation for the number of permutations

II. Theorems that will be proven in the document
1. Extensions of the type 

Theorem  : For each odd value of  such that ,  does not diverge, and the only cycles
are the trivial cycles obtained by testing the Syracuse sequence for all  with  and

2. Extension 
Theorem  : There exists at least one value  for which  diverges to infinity

III. Test of Syracuse sequence to find trivial cycles
IV. List of transitions JGL and minimum length of a cycle for  , for all  and 

1. Purpose
2. Approximated reduced Syracuse sequence : 
3. Property IV-3 : It exists  such that  for all  with  ∈ ℚ
4. Condition for the existence of a non-trivial cycle , for all  and 

Necessary condition IV-4-1 :  to have a non-trivial cycle of length N, with  the

minimum value of the cycle
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Necessary and sufficient condition IV-4-2 :  to have a non-trivial cycle of length N, with  the

minimum value of the cycle
5. Condition for the existence of a non-trivial cycle , for all  and 

Necessary condition IV-5-1 :  to have a non-trivial cycle of length N, with  the

maximum value of the cycle

Necessary and sufficient condition IV-5-2 :  to have a non-trivial cycle of length N, with  the

maximum value of the cycle
6. Algorithmic note : Use of BigInt() for the decimal computations

7. Equivalence of values of ( , , ) such that  and approximations of  by 

Property IV-7-1 :    for approximations of  by 

8. Defect approximations of  by 

9. Approximations by excess of  by 

10. Expanded expression of 
11. Construction of the JGL( ) transition list for  :

a. JGL(1) :
b. JGL(2) :
c. JGL(3) :
d. JGL(4) :
e. General case, construction of JGL( ) from JGL( ) :

12. Construction of the JGL( ) transition list for  :
a. JGL(1) :
b. JGL(2) :
c. JGL(3) :
d. JGL(4) :
e. General case, construction of JGL( ) from JGL( ) :

13. Minimum length of a cycle obtained through step-by-step calculations for 
The minimum length for a cycle is 114208327604 for the reduced sequence of Syracuse 
The minimum length for a cycle is 186265759595 for the strandard sequence of Syracuse 

14. Minimum length of a cycle obtained through step-by-step calculations for 
15. Step by step JGL transition list
16. Expression of  of JGL( )

For , 

17. Conclusion
V. Demonstration of the observations of the previous section

1. Return to the construction of JGL and the minimum length of a non-trivial cycle
2. Patterns of JGL( )
3. Quick calculation of  for JGL( )

1. Calculation of  for a concatenation of transition lists
a. Case  :
b. Case  :

c. General case  :

d. Special case  :
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e. General case  :

f. Calculation test of  :
2. Application for JGL

1. Property V-3-2-1 : For JGL( ),     

3. Property V-3-3 : For all , in JGL( ), if  is of "type 1", then 
4. Property V-3-4 : For all  corresponding to an "approximation" of  , in JGL( ),   

4. Calculation of VMax( ) for  corresponding to an "approximation" of 

Property V-4-1 :      for ,

"approximation" of 
5. Proof of the experimental result of the paragraph IV-13 for  :
6. Proof of the experimental result of the paragraph IV-14 for  :

VI. Search for cycles :
1. Summary on the minimum length of a non-trivial cycle :

1. Recap of the results
2. Upper bound of  with the maximum value of    :
3. Upper bound of the difference between two consecutive values of  for  an "approximation of "
4. Lower bound of the minimum length  of a cycle if the sequence has been verified up to 

2. "Theorem 0"
3. Location of elements of potential cycle using the "Theorem 0"

Property VI-3 : If  has a cycle of length , then all the different elements of the cycle { , ..., } satisfy

 for  (for  if )
4. Probabilistic reasoning with the fundamental property :

1. Determination of the number  of possible candidates  for a cycle of length N :
1. Special case :  is an "approximation of "

2. General case : Any 

3. Upper bound of  for large values of 
 for 

4. Test

2. Property VI-4-2 : The probability of "  even" is 

3. Distribution of the values of , solutions of candidate lists

1. The probability that  is 

2. Values of  which loop in a trivial cycle for a list
4. Upper bound of the number of 

All values of , from which we could have a cycle, satisfy  for 
5. Summary on the existence of cycles

Conclusion : There can not be any cycle other than the trivial cycles for 
6. Experimental results

VII. Study of the divergence towards infinity
1. The number  of transition lists of length  such as, for  for , is less than or equal to 

 for 
2. Candidate transition lists to eliminate
3. Conclusion about the existence of divergences towards infinity
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All values of , from which we could have  for all , verify  for 
 and for 
There is no divergence to infinity for 

4. Consistency with the records of "altitude flight" (glide)
5. My own verification of the sequence for  with 
6. Test of the sequence

VIII. General case, in particular 
1. Case  odd

1. Case 
2. Case 

1. Case 
2. Case 

3. Case 
For  and , there exists at least one value  from which the sequence  (  too) diverges

4. Case 
2. Case  even

1. Case 
2. Case  or  or 
3. Case 
4. Case 

IX. Appendices
1. "Theorem 1"
2. Jacques BALLASI's conjecture

X. References
XI. See also: Other documents

I. Definitions :

We list a set of definitions, a summary or practical reminder to facilitate the reading of the document.

a. The Syracuse sequence (extended) : 

We define , an odd integer because  can be negative.

b. The reduced (extended) Syracuse sequence : 

As if  is odd,  is even by construction, it is interesting to make the following transition directly.
The reduced Syracuse sequence brings together this transition.

We define , an odd integer because  can be negative.

c. Trajectory of length  or transition list  for :

A trajectory of length N is a list of "type 0" or "type 1" transitions, thus a word composed of 0 and 1.
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We will set , the number "type 0" transitions and  the number "type 1" transitions and :

For example, with  :

With , we get  = 7 =="type 1"==> 11 =="type 1"==> 17 =="type 1"==> 26 =="type 0"==> 13, the trajectory is
 = "1110" with ,  and 

d. The approximated reduced Syracuse sequence : 

Let's define the approximated sequence by replacing the term  with 
It is immediate that the approximation makes sense for values of  that are large enough and values of  that are
low enough.

We ensure that the transitions of  are identical to those of 

We can notice that some elements of  are not integers.

e. Notations

The value  =  and therefore , with , the natural logarithm of 

 the kth defect approximation of  (with  and )

Inequality (In-1) : 

, the maximum value of  that satisfies this inequality (In-1)

, old notation for the number of permutations

II. Theorems that will be proven in the document

1. Extensions of the type 
We define the extended Syracuse sequence : 

We define , an odd integer because  can be negative.

Remarks :
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Instead of extending the definition of  by taking , we could have chosen to keep  and extend
the definition to .
Moreover, for , if we define the sequence  with  and , then  for 
and .
Indeed, by immediate induction, this is true at rank 0 since  and if we assume that it is true at rank

, then we can easily obtain the property at the rank  :

If  is even, then 

If  is odd, then 

This equivalent way to see the extension, with  instead of , will be used in the proof as it
simplifies the reasoning.
In the document, to improve readability, we will not specify that  depends from 

We define the extended reduced Syracuse sequence : 
As if  is odd,  is even by construction, it is interesting to make the following transition directly.
The reduced Syracuse sequence brings together this transition.

We define , an odd integer because  can be negative.

Remarks :
In the document, to improve readability, we will not specify that  depends on 
Equivalently, the extension could have been done with  instead of .
This will be used in the proof as it simplifies the reasoning.
We will systematically use the sequence  instead of  throughout the proof

Theorem  : For each odd value of  such that ,  does not diverge, and the only
cycles are the trivial cycles obtained by testing the Syracuse sequence for all  with 

and 

Remarks :
The standard Syracuse conjecture corresponds to the particular case . In this case,  and since we
have tested the sequence up to , there is only one cycle. As a reminder, the conjecture is : "For any
initial value, the sequence reaches the value 1."
Trivial cycles for  : We will call "trivial cycle", any cycle obtained by testing the sequence for 
Very trivial cycles for  : Among the trivial cycles, these cases stand out particularly and will often be
omitted

If  then we have a cycle for  for the transition list "10" since

 and 

If  then we have a cycle for  for the transition list "1" since

For all value of , there is at least one cycle.
We will say that we have "tested the sequence" or that the "sequence is verified" up to a value  if for all
value less than , the results are not in disagreement with the theorem, that is, the sequence  does not
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diverge and the cycles found are included in the list of trivial cycles. If  , then it means that we
have found all the trivial cycles and no others.
We have taken  for the proof.
We could certainly have taken a lower value , especially for certain values of 
We could also have taken a higher value like  (or a little more), which would have facilitated the
conclusion regarding the search for cycles, and which would not have changed the results of the tests, which
would simply have taken a bit longer to perform.
There is no conceptual difficulty in proving the theorem for  or , it would just require
increasing the value of  (whose new value could be determined and would likely not be much higher) and
again testing the sequence for ... until it becomes impossible to perform such a verification,
already for , which represents the maximum number of tests performed to date for the
standard sequence.

:
We will look for trivial cycles by testing the sequence
We will construct the JGL list, which is the central element for the proof
We will finalize the study of cycles by proving that there are no cycles other than trivial cycles.
We will then prove that the sequence does not diverge.

2. Extension 

Theorem  : There exists at least one value  for which  diverges to infinity

III. Test of Syracuse sequence to find trivial cycles

For the standard Syracuse sequence, Syracuse conjecture has been verified for all  (source Wikipedia on
02/01/2021)
After checking the Wikipedia[1][2] page at the time of writing this version, (writing began on 10/30/2022), the Syracuse
conjecture has been verified for all 
This verification bound may still change, which would alter the minimum length of a potential cycle.

We will set  for the rest of the document.

As , we have no additional test to perform, the only trivial cycle is 1,4,2 for  or 1,2 for .

M ³ 2N0 + B1

N0 = 17
-1024 £ b1 £ 1024

N0 = 22

b1 < -1024 b1 > 1024
N0

v0 £ 2N0 + B1

b1 > 268 - 17 = 251

5n+1

ì

í

î

ï

ï

ï

ï

ï

ï

v0 > 0

vn + 1 =
vn
2  if v n  is even (transition of type 0)

vn + 1 =
5 vn +1

2  if v n  is odd (transition of type 1)

5n+1 v0 v

v0 £ 1.25´262

v0 £ 268

maxSyr_1 = 268

268 > 217 u v





I have not found any verification data for the sequence for , it is true that calculations would need to be done for
each value of 

We will set 

Trivial cycles for  : We will call a "trivial cycle", any cycle obtained by testing the sequence for 
Very trivial cycles for : Among the trivial cycles, these cases stand out particularly and will often be omitted

If  then we have a cycle for  for the transition list "10" since 

and 

If  then we have a cycle for  for the transition list "1" since

For all value of , there exists at least one cycle.
For , it is sufficient to study  for .

Indeed :
If  then we have the trivial cycle
If , then there exist  such that . This thus reduces to the study of  with  and

.

Proof of the existence of  such that  :

If  is even, then  because 

If  is odd, then 

Therefore the sequence  is strictly decreasing as long as the current term is positive. Since , there will
exist  such that 

For , we also have two types of fairly recurrent cycles :

For  with  : if  which is odd, then  and then

 for all 

For  with  : if  which is odd, then 

is odd,  is odd and  is even,

 therefore we have a cycle of length 2, for which the minimum value is 

Study of the behavior of  for the values of , in order to find the set of trivial cycles, the goal of the
demonstration being to prove that no others exist :

The calculations were done with the JavaScript algorithm below. It can certainly be optimized like all the other
algorithms provided here, this is not the purpose of this document. This program was used to obtain the results
below.
For  by testing for  with  :
All trivial cycles obtained have a length less than or equal to 426 < 1539 (and 426 < 1054 for ).
The first condition is satisfied for the demonstration.
The computation time was 17250 s for  and 17995 s for , for a total of approximately
10 hours on my computer (Intel(R) Core(TM) i5-1035G1 processor, Google Chrome Version 119.0.6045.160
(Official build) (64 bits)).

ith

b1 ¹ 1
b1

B1 = ⌈
Ln ( b1 )

Ln2 ⌉

v v0 £ 2N0 + B1

v

b1 > 0 v0 = b1 v1 =
3 v0+b 1

2 =
3b1+b1

2 = 2b1

v2 =
v1

2 = b 1 = v0

b1 < 0 v0 = -b1

v1 =
3 v0+b 1

2 =
-3b1+b1

2 = -b1 = v 0

b1

b1 < 0 v v0 > -b1

v0 = -b1

0 < v0 < -b1 n vn < 0 v' v' 0 = -vn > 0
b1 ' = -b1 > 0

n vn < 0

v0 v1- v0 =
-v 0

2 < 0 v0 ³ 2

v0 v1- v0 =
3 v 0+b1

2 - v0 =
v0 +b 1

2 < 0

v vn ¹ 0
n vn < 0

b1 < 0

b1 = -3 ( 2 k +1 ) k > 0 v0 =
-b1

3 = -( 2 k +1 ) v1 =
3 v0+b 1

2 = 0

vn = 0 n > 0

b1 = -9 ( 2 k +1 ) k > 0 v0 =
-b1

9 = 2 k +1 v1 =
3 v0+b 1

2 =

-b1

3 +b1

2 =
b1

3

v2 =
3 v1+b 1

2 =
b1+b1

2 = b1 v3 =
3 v2+b 1

2 =
3b1+b1

2 = 2b1

v4 =
2b1

2 = b 1 = v2 b1

v v0 < 2N0 + B1

-1024 < b1 < 1024 v0 < 2N0 + B1 N0 = 17
b1 < 0

0 < b1 < 1024 -1024 < b1 < 0

S b1 2N + B N 17



 with .

Value of b1 :  Test for  with  : 17  Try See/Hide code

Tests for all values of  with 0  <  < 8  Tests for all values of 

Summary of exhaustive results for  :
259 values of  have only one very trivial cycle
The maximum length of a cycle is 426 obtained for  and 
There are 2864 cycles that are not very trivial

Exhaustive results for :  : See/Hide results

Results at the end of the document
See the results

Summary of exhaustive results for  :
256 values of  have only one very trivial cycle
The maximum length of a cycle is 426 obtained for  and 
There are 3927 cycles that are not very trivial

Exhaustive results for :  : See/Hide results

Results at the end of the document
See the results

IV. List of transitions JGL and minimum length of a cycle for  , for all  and 

1. Purpose

The objective of this section is to rediscover, in a somewhat different way, the result obtained by Mr. Shalom
Eliahou[3][4].

In French: Published on 2011/12/20 in the document "Le problème 3n+1 : y-a-t-il des cycles non triviaux ?"
(https://images.math.cnrs.fr/Le-probleme-3n-1-y-a-t-il-des-cycles-non-triviaux-III.html).
In English : "The 3x + 1 problem : new lower bounds on nontrivial cycle lengths"
(https://www.sciencedirect.com/science/article/pii/0012365X9390052U)

These documents are referenced in the Wikipedia pages of the Syracuse conjecture in French[1] and Collatz
conjecture[2] in English, even though the result has since been updated.

Since the conjecture in the standard case has been verified for , then there is no other cycle of length less
than 186 billion for .

We will prove that for , given the tests for , there indeed exist so-called trivial cycles and
the minimum length of another cycle is greater than or equal to 2510 for  and 1539 for 
And, we will prove that for , given the tests for , there indeed exist so-called trivial
cycles and the minimum length of another cycle is greater than or equal to 1719 for  and 1054 pour 

Notes :
When Syracuse conjecture was stated, it was certainly natural to see how far it was true.
The result of Shalom Eliahou which shows the link between the verification of the conjecture and the
minimal length of a cycle, has certainly also contributed to testing the validity of the conjecture even further.
Computers have become more powerful over the years and certainly 364249198012174112 ~ 3.64×1017

tests must have been conducted to verify the conjecture up to 
In fact, in my proof of the theorem, it is sufficient to verify it up to  and perhaps one could do less.
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The method used is based on the use of a transition list that we will call JGL (for "Just Greater List") that we will
define, which will allow us to construct it step by step.

By a simple computer calculation, which lasts quite a long time, we find the result.

A number of paragraphs are "duplicated" for the case  (or )

In the following section, we will not be satisfied with this calculation and we will add a more mathematical and
rigorous proof by studying the patterns of the JGL list to obtain the result instantly, without any real computer
calculation.

2. Approximated reduced Syracuse sequence : 

Let's define the approximated sequence by replacing the term  by 
It is immediate that the approximation makes sense for values of  that are large enough and values of  that are
low enough.

We ensure that the transitions from  are identical to those of 

We can notice that some elements of  are not integers.

3. Property IV-3 : It exists  such that  for all  with  ∈ ℚ

This expression is true for  with 
Assume that the property is true at rank  and prove that it is verified at the rank ( )

If  is even then  then it's true with 

If  is odd then  therefore it's true with 

It will be noted that if  follows the trajectory L, then  follows the same evolution as the reduced Syracuse
sequence. It's as if we started from the value 0.

A advantage for the study is that the quantity  only depends on the list of transitions (but not on )

Therefore for all 
If  then 
If  then 

See paragraph IV-10 for more details

4. Condition for the existence of a non-trivial cycle , for all  and 

Assume it exists  which represents a cycle of length  for .

Note : We always use the reduced sequence . Thus, if  has a cycle of length , then  has a cycle of length
 (and vice versa).

If it exists L  for which we have a cycle for , then the  circular permutations of L  represent
this cycle of length . We can always choose the transition list for which  is the smallest element of the cycle, it
is not a restriction.
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If  is the smallest element of a potential cycle of length  then the  distinct elements are , ,...,  and

 for all  and  follows the list of transitions L

 for 
 to have a cycle of length 

In this paragraph, we also study the general case with 

Moreover, for all ,
 because  and as  is necessarily of "type 1" so that  is greater than , then we even have

  

0. Case 0 : If , then it is always verified because  and 

1. Case 1 : If , then   .

Remarks :
If, for all , we were in the "case 0", then  and there would be no cycle.

Therefore, necessarily, there exists at least one step  for which , that is to say that  is sufficiently

large to compensate for the difference , the crossing below the boundary induced by .
The sequence test has been done for , which made it possible to detect all the "trivial"
cycles.

For ,  and we found only one cycle of length 2 for the transition list "10"

For , , and for each value of , a set of "trivial" cycles was possibly found in
addition to the length 2 cycle for the transition list "10"
For a "non-trivial" cycle, we necessarily have  and therefore for all the values of 
corresponding to the "case 1", we have 
To increase the value of  with  the minimum value of the cycle :

 must be maximum

 must be the closest to 0 by a higher value

Necessary condition IV-4-1 :  to have a non-trivial cycle of length N, with 

the minimum value of the cycle

Necessary and sufficient condition IV-4-2 :  to have a non-trivial cycle of length N, with

 the minimum value of the cycle

The JGL list that we will define will satisfy the 2 properties :

 will be as close as possible to 1 by defect

 will be the maximum for the set  with  the minimum of  for 

Let us first consider when  is as close as possible to 1 by defect. To achieve this, we need a calculation

v0 > 0 N N v0 v1 vN - 1

vn + 1 = v (v n) 0 £ n < N v0 (N, m , d)

vn > v0 0 < n < N
vN = v0 N

b1 > 1

0 < n £ N
rn ³ 0 b1 > 0 t0 v1 v0

rn > 0

vn =
3m n

2n v0+ rn ³ v 0 Û
æ
è1- 3m n

2n

ö
ø v 0 £ rn

3m n

2n > 1 v0 > 0 rn ³ 0

3m n

2n < 1
æ
è1- 3m n

2n

ö
ø v 0 £ rn Û v0 £

rn

1- 3m n

2n

= V (n -1)

0 < n £ N vN > v0

n 3m n

2n < 1 rn

v' n - v0 v0

v0 < maxSyr_b1

b1 = 1 maxSyr_b1 = 268

b1 > 1 maxSyr_b1 = 217 + B1 b1

v0 > maxSyr_b1 0 < n < N
V (n -1) ³ maxSyr_b1

V (n -1) v0
rn

1- 3m n

2n

rN

1- 3m

2N

³ maxSyr_b1 v0

v0 =
rN

1- 3m

2N

v0

3m

2N

rN L (N, m , d) v0 vn 0 < n < N

3m

2N



precision greater than the defect in JavaScript, this is the subject of the following paragraph
, after the study of the symmetric case for .

Then we will analyze the behavior of  and construct the JGL list.

5. Condition for the existence of a non-trivial cycle , for all  and 

For  (initially) :
We use the equivalence described in the paragraph I-a, namely that the extension for  can be replaced
by the study of the sequence  and  since all the elements are simply opposite.
Therefore, after this change  is always positive and, consequently  is also but .

Assume it exists  which represents a cycle of length  for , it is then a cycle for .

Note : We always use the reduced sequence . Thus, if  has a cycle of length , then  has a cycle of length
 (and vice versa).

If it exists L  for which we have a cycle for , then the  circular permutations of L  represent
this cycle of length . We can always choose the transition list for which  is the largest element of the cycle, it
is not a restriction.

If  is the largest element of a potential cycle of length  then the  distinct elements are , ,...,  and

 for all  and  follows the transition list L
NB : Keep attention, here  represents the largest element of the cycle :

If  then we would be in the previous case which has already been described
If  then  means , this is the symmetrical case that we study here.

We are therefore in the case :

 for 
 to have a cycle of length 

In this paragraph, we also study the general case with  and 

Moreover, for all ,
 because  after transformation and as  is necessarily of "type 1" so that  is less than ,

therefore we even have 

  

0. Case 0 : If , then it's not possible

1. Case 1 : If , then   .

Remarks :
If, for all , we were in the "case 0", then there would be no cycle.

Therefore, necessarily, there is at least one step  for which , that is to say that  is sufficiently

large to compensate for the difference , the state under the boundary induced by .
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The sequence test has been done for , which made it possible to detect all the "trivial"
cycles (i.e., with  and ).

 and for each value of , we may have found a set of "trivial" cycles, in addition to
the cycle of length 1 for the transition list "1"
For a "non-trivial" cycle, we necessarily have  and therefore for all the values of

 corresponding to "case 1", we have 
To increase the value of  with  the maximum value of the cycle :

 must be maximum

 must be the closest to 0 by lower value

Necessary condition IV-5-1 :  to have a non-trivial cycle of length N, with 

the maximum value of the cycle

Necessary and sufficient condition IV-5-2 :  to have a non-trivial cycle of length N, with

 the maximum value of the cycle

The JGL list that we will define will satisfy the 2 properties :

 will be as close as possible to 1 by excess

 will be the maximum for the set  with  the maximum of  for 

Let us first consider when  is as close as possible to 1 by excess. To achieve this, we need a calculation

precision greater than the default in JavaScript, this is the subject of the following paragraph.

Then we will analyze the behavior of  and construct the JGL list.

The JGL list will be identical to the previous case (  and ), only interesting values of  will be
different.

6. Algorithmic note : Use of BigInt() for the decimal computations

The implementation of decimals in JavaScript language (IEEE 754 standard) does not provide sufficient precision
in certain calculations.

Instead of programming or using a library to improve calculation precision (which slows down calculations),
since only a few mathematical operations are needed in the programs of the document, mainly division and the
natural logarithm, we multiply the quantities by a factor depending on the desired precision. This way, we can use
the integer division of BigInt(). We do the same for the natural logarithms of 2 and 3.

We see that the natural logarithm of 5 is also defined, used to study the form .

We then have the following code and global variables for all algorithms (definition of precision, evaluation and
formatting of the results) :
Javascript code not available in this document.

7. Equivalence of values of ( , , ) such that  and approximations of  by 

We have :  =  =  = 
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because 

Therefore  is close to 1 if and only if  is close to 0.

It is therefore necessary to look for the approximations of  with .

Then, we will have an equivalent because    near 0, because for approximations, the difference  is

of the order of 

  

Therefore :

Property IV-7-1 :    for approximations of  by 

NB : In the rest of the document, we will sometimes note  as an "approximation" of  as a language shortcut, of

course, it is  which approximates  with 

We could look for the approximations of  using continuous fractions, as the method allows for rapid
convergence

However, this is not the method considered to obtain the exhaustive list of approximations for a given maximum
value of .

The Stern-Brocot tree will be used to list all the defect (or excess) approximations of .

The method gives all the irreducible fractions , which is not necessarily a constraint for the length of a cycle

 so we will have to to consider all the multiple lengths  with , if that has a significance for the
Syracuse theorem.

8. Defect approximations of  by 

Reminder of the method of the Stern-Brocot tree :

Initially,  and ,  representing infinity.

We repeat the following steps until the desired precision is readched, knowing that we do not necessarily have a
better approximation by defect (different as those already obtained) at each step

If , then we compare with the median .

If  then  is a better defect approximation and we change  by the median

If  then we change  by the median

We will note  the kth approximation of  by defect (with  and )

We find the following results :
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×| |

1 1 2 -7.0951×10-1 7.0951×10-1

3 2 5 -2.0951×10-1 8.3805×10-1

5 3 8 -4.2845×10-2 3.8560×10-1

17 10 27 -9.5113×10-3 9.5113×10-1

29 17 46 -3.6289×10-3 1.0488

41 24 65 -1.1780×10-3 6.7850×10-1

94 55 149 -4.2038×10-4 1.2717

147 86 233 -2.0897×10-4 1.5455

200 117 317 -1.0958×10-4 1.5001

253 148 401 -5.1832×10-5 1.1353

306 179 485 -1.4085×10-5 4.5129×10-1

971 568 1539 -4.2491×10-6 1.3709

1636 957 2593 -2.4094×10-6 2.2067

2301 1346 3647 -1.6331×10-6 2.9587

2966 1735 4701 -1.2049×10-6 3.627

3631 2124 5755 -9.3354×10-7 4.2115

4296 2513 6809 -7.4619×10-7 4.7123

4961 2902 7863 -6.0906×10-7 5.1293

5626 3291 8917 -5.0436×10-7 5.4625

6291 3680 9971 -4.2179×10-7 5.712

6956 4069 11025 -3.5500×10-7 5.8777

7621 4458 12079 -2.9988×10-7 5.9597

8286 4847 13133 -2.5360×10-7 5.9578

8951 5236 14187 -2.1419×10-7 5.8723

9616 5625 15241 -1.8024×10-7 5.7029

10281 6014 16295 -1.5068×10-7 5.4498

10946 6403 17349 -1.2471×10-7 5.1129

11611 6792 18403 -1.0172×10-7 4.6923

12276 7181 19457 -8.1214×10-8 4.1879

12941 7570 20511 -6.2818×10-8 3.5998

13606 7959 21565 -4.6220×10-8 2.9278

14271 8348 22619 -3.1169×10-8 2.1722

14936 8737 23673 -1.7459×10-8 1.3327

15601 9126 24727 -4.9171×10-9 4.0951×10-1

47468 27767 75235 -9.7079×10-10 7.4848×10-1

79335 46408 125743 -1.9476×10-10 4.1945×10-1

190537 111457 301994 -1.4274×10-12 1.7732×10-2

10781274 6306641 17087915 -4.7737×10-15 1.8987×10-1

64497107 37728389 102225496 -5.7097×10-16 8.1273×10-1

118212940 69150137 187363077 -1.8767×10-16 8.9738×10-1

m d N diff =
m
d -X d 2 diff



171928773 100571885 272500658 -4.3877×10-17 4.4380×10-1

397573379 232565518 630138897 -1.1224×10-18 6.0709×10-2

6586818670 3853041921 10439860591 -6.4797×10-21 9.6198×10-2

72057431991 42150895613 114208327604 -3.2245×10-22 5.7290×10-1

137528045312 80448749305 217976794617 -2.7550×10-23 1.7830×10-1

890638885193 520990349522 1411629234715 -3.6910×10-24 1.0018

1643749725074 961531949739 2605281674813 -1.6948×10-24 1.5669

2396860564955 1402073549956 3798934114911 -9.5300×10-25 1.8734

3149971404836 1842615150173 4992586555009 -5.6592×10-25 1.9214

3903082244717 2283156750390 6186238995107 -3.2822×10-25 1.711

4656193084598 2723698350607 7379891435205 -1.6742×10-25 1.242

5409303924479 3164239950824 8573543875303 -5.1387×10-26 5.1451×10-1

It should be noted that for , the approximation is excellent in precision (

), it is indeed a better approximation, a fraction obtained from the continued

fraction expansion of .

Test of defect approximation of  with fractions : Try  See/Hide code  Back to approximations by excess

9. Approximations by excess of  by 

This will be used for the proof of the experimental results in the following section
but also in the case  with 
We can easily find the successive approximations (by fractions) by excess of  with the principle of the Stern-
Brocot tree.

Reminder of the method :

Initially,  and ,  representing infinity.

We repeat the following steps until the desired precision is reached, knowing that we do not necessarily have a
better approximation by excess (different as those already obtained) at each step

If , then we compare with the median .

If  then  is a better excess approximation and we change  by the median

If  then we change  by the median

We find the following results :

×| |

2 1 3 2.9049×10-1 2.9049×10-1

7 4 11 4.0489×10-2 6.4782×10-1

12 7 19 4.7744×10-3 2.3395×10-1
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53 31 84 1.6613×10-4 1.5965×10-1

359 210 569 1.2518×10-5 5.5205×10-1

665 389 1054 2.7677×10-7 4.1881×10-2

16266 9515 25781 6.5991×10-9 5.9746×10-1

31867 18641 50508 9.6119×10-10 3.3400×10-1

111202 65049 176251 1.3650×10-10 5.7758×10-1

301739 176506 478245 4.9404×10-11 1.5392

492276 287963 780239 2.9730×10-11 2.4653

682813 399420 1082233 2.1035×10-11 3.3559

Test of excess approximation of  with fractions : Try See/Hide code  (it's the same code as for the defect
approximations)

10. Expanded expression of 

What is essential to remember is that for a list of transitions of length  :
 is of the sign of 

The more the transitions of "type 1" are at the end of the list of transitions, the larger  is
The more the transitions of "type 0" are at the beginning of the list of transitions, the larger  is
Swapping two successive transitions does not have a significant impact on the value of 

We simply state a formula that we will prove by induction, after looking at an example to illustrate the idea of the
formula.

if  then 

if  then 

with
 is the number of "type 1" transitions among the  first transitions of L

 is the index (starting from 0) of the ith transition (starting from 1) of "type 1" in the list L

The interest of this formula is to see :
that for , the value of  is the one obtained for  multiplied by 
that for fixed ,  will be greater when the values  will be larger, i.e. when the "type 1" transitions
will be closer to the end or what is equivalent, when the "type 0" transitions will be at the top of the list (at
least as much as possible given the constraints imposed on L).
that the permutation of two transitions (*10* into *01*), for the ith transition of type "1", generates a

modification of  equal to  because  is increased by 1 and the other terms are

unchanged.

The relative difference is therefore 

that if two transition lists having the same length N and the same number  of transitions of type "1" (thus

same factor ) and that if in addition

they differ only from  permutations (all in the same direction to maximize the difference)

that for each "type 1" transition of each of the lists, we have  therefore 
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then the relative difference of  for both lists is less than , which can be very small.

For example, in the case of the standard Syracuse sequence, we consider the list of transitions L = "1101".

 then 

 then  = 

 then 

 then  =  =

We now prove the formula of  by induction.
We verify the formula at rank 1 :

If L = "0" then  and  and there is no term in the sum

If L = "1" then  and , which ends the verification at rank 1.

We assume the formula is true for rank  and show that it is true for rank 

 then  and 

 then  and  =

 =  =

This ends the proof of the formula.

11. Construction of the JGL( ) transition list for  :

JGL( ) is made up of  specific transitions , ... , .

JGL( ) satisfies two constraints :

1. For all , , that is  is the smallest element or 

2. Priority is given to transitions of "type 0", therefore, for all ,  is minimum

Note : If we have JGL( ) then we also have the value of  for this list of transitions.

The JGL( ) transition list is the longest transition list that maximize  for a given value of , with  the
minimum of , since the "type 1" transitions are placed as late as possible, which maximizes  according to the
previous paragraph (cf IV-10).

Steps of construction :
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They are the same for , only the bounds that we obtain are to be multiplied by  because  is multiplied by

a. JGL(1) :

It is a matter of determining the transition 

We have  with 

To have , necessarily  (of "type 1") and

 with  and , 

and JGL(1) = "1"

b. JGL(2) :

It is a matter of determining the transition 
We test whether we can make a "type 0" transition since they are given priority, as we must do them as early
as possible.

If  then 

And the condition     

We then test , then  and , it's the trivial cycle, even for , we find it.

Very well, but since we are looking for potential other cycles and the Syracuse sequence is verified for all
 (or  for ) then necessarily  and then, necessarily, 

Therefore  or 

Finally ,  and

JGL(2) = "11"

c. JGL(3) :

It is a matter of determining the transition 

As , then the "type 0" transition ( ) is possible because 

Then  with , , 

and JGL(3) = "110"

d. JGL(4) :

It is a matter of determining the transition , by first testing a transition of "type 0"

If  then 

And the condition     , which is in contradiction with

 therefore  and , , 
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and JGL(4) = "1101"

e. General case, construction of JGL( ) from JGL( ) :

0

v0

More generally, we assume JGL( ) is constructed therefore  and we are trying to

construct JGL( ), that is to determine , by testing if a "type 0" transition is possible.

Does    ?

If    then the inequality is true for all  because  and

the natural logarithm function is increasing.

In this case,  and JGL( ) = JGL( ) + "0"

If  then  is possible if

    

If  then with , we would possibly have a trivial cycle. We eliminate this
case and therefore , so JGL( ) = JGL( ) + "1".

The first time  then  is possible and therefore JGL( ) = JGL( ) + "0",
this is the necessary condition to have a non-trivial cycle of length .

As , to have a cycle of length , it is imperative that  and  is large enough so

that , equality would mean a cycle (and  would be the minimum length of
a non-trivial cycle).

Then, we can test when this inequality is true by simply doing calculations, step by step, it's easy to program.

12. Construction of the JGL( ) transition list for  :

JGL( ) is made up of  specific transitions , ... , .

JGL( ) satisfies two constraints :
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1. For all , , that is  is the largest element or 

2. Priority is given to transitions of "type 0", therefore, for all ,  is minimum

Note : If we have JGL( ) then we also have the value of  for this list of transitions.

The JGL( ) transition list is the longest transition list that maximize  for a given value of , with  the
maximum of , since the "type 1" transitions are placed as late as possible, which maximizes  according to the
previous paragraph (cf IV-10).

We call the list JGL because it is identical to that described for the case .

Indeed, we can bring together the two cases as follows :

1. For all , , that is, 

2. Priority is given to "type 0" transitions so for all ,  is minimum

It is just considered in different places, namely for the "approximations of " by defect when  and for the
"approximations of " by excess when 

Steps of construction :
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They are the same for , only the bounds that we obtain are to be multiplied by  because  is multiplied byb1 > 1 b1 rn
b1



a. JGL(1) :

It is a matter of determining the transition 

We have  with 

To have , necessarily  (of "type 1") and

 with  and , 

and JGL(1) = "1"

Notes :

  

 for , we find the trivial cycle.

As we assume the sequence tested for , we are in the case 

b. JGL(2) :

It is a matter of determining the transition 
We test whether we can make a "type 0" transition since they are given priority, as we must do them as early
as possible.

If  then 

And the condition     , which is impossible because  and .

Therefore, necessarily, 

And  or 

Finally ,  and

JGL(2) = "11"

c. JGL(3) :

It is a matter of determining the transition , by first testing a transition of "type 0"

If  then 

And   , which is true because we are in the case 

Then  with , , 

and JGL(3) = "110"

d. JGL(4) :

It is a matter of determining the transition , by first testing a transition of "type 0"

If  then 

And the condition     , which is in contradiction

t0

v0 =
30

20 v0+ r0 r0 = 0

v1 £ v0 t0 = 1

v1 =
3 v0+b 1

2 =
31

21 v0+ r1 r1 =
3 r0+b 1

2 =
b1

2 m1 = 1 d1 = 0

v1 =
3 v0+b 1

2 £ v0 Û v0 £ -b1

v1 = v0 v0 = -b1

-maxSyr_b1 < v0 < 0 v0 < -maxSyr_b1 < -b1

t1

t1 = 0 v2 =
v1

2 =
3
4 v 0+

r1

2 =
3
4 v0+

b 1

4

v2 £ v0 Û
3
4 v0+

b1

4 £ v 0 Û v0 ³ b1 v0 < 0 b1 > 0

t1 = 1

v2 =
3 v1+b 1

2 =
3
æ
è

3
2 v0+

b1

2
ö
ø+b 1

2 =
9
4 v0+

5b1

4 =
32

22 v 0+
5b1

4 r2 =
3 r1+b 1

2 =
5b1

4
m2 = 2 d2 = 0

t2

t2 = 0 v3 =
v2

2 =
9
8 v 0+

5
8 b1

v3 £ v0 Û v0 £ -5b1 v0 < -maxSyr_b1

v3 =
32

23 v0+
5b 1

8 r3 =
5b1

8 m3 = 2 d3 = 1

t3

t3 = 0 v4 =
9
16 v0+

5b 1

16

v4 £ v0 Û
9

16 v0+
5b1

16 £ v 0 Û v0 ³
16
7 ´

5b1

16 =
5b1

7 > 0



with  therefore  and , , 

and JGL(4) = "1101"

We find the same beginning of JGL as for 

e. General case, construction of JGL( ) from JGL( ) :

0

v0

More generally, we assume JGL( ) is constructed therefore  and we are trying to

construct JGL( ), that is to determine , by testing if a "type 0" transition is possible.

Does    ?

If    then the inequality is always false for all  because

 and  (and the natural logarithm function is increasing for transformation).

In this case,  and JGL( ) = JGL( ) + "1"

If  then  is possible if

    

Therefore, it is always possible to have values of  which satisfies this inequality, therefore  and
therefore JGL( ) = JGL( ) + "0".

But, as  and , to have a cycle of length , it is imperative that  is large

enough so that , equality would mean a cycle.

Therefore a necessary condition to have a cycle, is , the previous inequality in the
other direction.

If , then it would be a trivial cycle, which we are not interested in here.

If  then the necessary condition to have a cycle of length  is filled (it
remains to find a possible for which the equality would be verified)
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remains to find a possible  for which the equality would be verified)

Then, we can test when this inequality is true by simply doing calculations, step by step, it's easy to program.

13. Minimum length of a cycle obtained through step-by-step calculations for 

In the step-by-step construction of the JGL transition list, we list the values of increasing .

For the first value of  that is greater than , we get , the minimum length of a non-trivial
cycle (if it exists).

If , we change the transition (which corresponds to a simple permutation with the next
one) and it is indicated that this length  should be studied. If we are trying to construct JGL for values of 
much higher than the minimum value of a cycle, this case will repeat itself more and more often and that has no
interest.

If we set an very large arbitrary value of , we will then obtain the list of values of  for which the
sequence should be tested to increase the minimum length of a non-trivial cycle.

In the calculation algorithm, we take , but if , then as  is multiplied by  compared to the value
obtained with , the bound obtained is also to be multiplied by . This also explains the form of

 with  which increases the value of  for the line corresponding to 

We get the following results , the values of  are to be multiplied by  :

maximum value for 

1 0 1 0.5 1 ~ 20

3 1 4 1.438 4.6 ~ 22.202

5 2 7 2.492 24.54 ~ 24.617

17 9 26 8.172 108.01 ~ 26.755

29 16 45 13.93 281.94 ~ 28.139

41 23 64 19.766 867.14 ~ 29.760

94 54 148 45.156 2419.68 ~ 211.241

147 85 232 70.599 4862.05 ~ 212.247

200 116 316 96.094 9266.54 ~ 213.178

253 147 400 121.643 19584.90 ~ 214.257

306 178 484 147.246 72058.07 ~ 216.137

971 567 1538 466.89 238670.39 ~ 217.865

1636 956 2592 786.548 420841.76 ~ 218.683

2301 1345 3646 1106.22 620858.37 ~ 219.244

2966 1734 4700 1425.906 841477.43 ~ 219.683

3631 2123 5754 1745.606 1086054.96 ~ 220.051

4296 2512 6808 2065.32 1358717.75 ~ 220.374

...

and after several long hours (or possibly days) :

max such as  ≤ 2max
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79335 46407 125742 38152.167 32.277
190537 111456 301993 91629.092 39.369

10781274 6306640 17087914 5184696.98 47.594
64497107 37728388 102225495 31016552.171 50.657

118212940 69150136 187363076 56848407.453 52.262
171928773 100571884 272500657 82680262.824 54.359
397573379 232565517 630138896 191192380.914 59.648

6586818670 3853041920 10439860590 3167590210.299 67.084
72057431991 42150895612 114208327603 34652299930.941 71.413

Test to get the maximum value of  : 2024  knowing that the sequence has been verified up to 2^
17  Try  See/Hide code

We notice that :
since Syracuse sequence has been verified for all , this inequality is never true for values of

, because  even if there are small truncation errors, due to the numerous
calculations. Obviously, if the sequence were verified for larger values of , the value would be even
greater for the inequality to be verified.

 are exactly and only those that correspond to approximations by defect of 

The JGL( ) transition list fully meets the 2 optimal conditions for having a cycle (cf IV-4-1)

We can therefore affirm, solely based on the results obtained through calculation, in the case where ,

that :
For ,  is of "type 1" and JGL( ) = JGL( ) + "1"
For , it may happen that from time to time (perhaps once every 10 billion of transitions), a
transition  is of "type 0", and then  would be of "type 1" (and if not, it would have been "type 0"), it is
a simple interchanging of two transitions.

Conclusion of calculations knowing that the sequence has been verified for  :
The minimum length for a cycle is 114208327604 for the reduced sequence of Syracuse 
The minimum length for a cycle is 186265759595 for the strandard sequence of Syracuse  because we
add  steps

We realize that it would be necessary to verify the sequence for  to increase the minimum length of a non-
trivial cycle, for which much more calculation time would be needed.
For , the bounds need to be adjusted, and if all the cycles have been verified and searched for ,
then we can affirm that another cycle, if it exists, has a length greater than or equal to  for  i.e.
1539 + 971 = 2510 for 

14. Minimum length of a cycle obtained through step-by-step calculations for 

In the step-by-step construction of the JGL transition list, we list the values of increasing .

For the first value of  which is greater than , we get , the minimum length of a non-
trivial cycle (if it exists).

If we set an very large arbitrary value of , we will then obtain the list of values of  for which the
sequence should be tested to increase the minimum length of a non-trivial cycle.

In the calculation algorithm, we take  and  (which is equivalent to  and ), but if ,
then as  is multiplied by  compared to the value obtained with , the bound obtained is also to be
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multiplied by . This also explains the form of  with  which increases

the value of  for the line corresponding to 

We get the following results , the values of  are to be multiplied by  :

maximum value for 

2 0 2 -1.25 5 ~ 22.322

7 3 10 -3.679 27.10 ~ 24.760

12 6 18 -5.984 219.31 ~ 27.777

53 30 83 -25.682 6143.16 ~ 212.585

159 92 251 -77.208 6143.16 ~ 212.585

212 123 335 -103.052 6143.16 ~ 212.585

318 185 503 -154.901 6143.16 ~ 212.585

359 209 568 -172.902 81063.35 ~ 216.307

665 388 1053 -319.971 3664765.05 ~ 221.805

1330 777 2107 -639.956 3664765.05 ~ 221.805

1995 1166 3161 -959.955 3664765.05 ~ 221.805

16266 9514 25780 -7822.559 153625412.52 ~ 227.195

31867 18640 50507 -15325.01 1054720842.54 ~ 229.974

...

and after several long hours (or possibly days) :

max such as  ≤ 2max

301739 176505 478244 -145106.21 20520083760.05 ~ 234.256

6398923 3743129 10142052 -3077233.924 1045634943660.33 ~ 239.928

32153285 18808465 50961750 -15462461.988 277238656568662.88 ~ 247.978

3406231638 1992517776 5398749414 -1638051164.939 978964046509643500 ~ 259.764

32536519971 19032644086 51569164057 -15646758670.581 141656386397821760000 ~ 266.941

39123338641 22885686007 62009024648 -18814348880.721 208562895352680150000 ~ 267.499

45710157311 26738727928 72448885239 -21981939090.829 314192776498692500000 ~ 268.090

52296975981 30591769849 82888745830 -25149529300.905 505854005668244600000 ~ 268.777

58883794651 34444811770 93328606421 -28317119510.949 960856011060574000000 ~ 269.703

65470613321 38297853691 103768467012 -31484709720.961 3.41×1021 ~ 271.532

Test to get the maximum value of  : 2024  knowing that the sequence has been verified up to 2^
17

We can vary the precision to see more or fewer multiples of the irreducible fractions : 50
Try  See/Hide code

We notice that :

 which give a value of  significantly different from the maximum value of  are those and

only those that correspond to approximations by excess of .

The other fractions correspond to non-irreducible fractions, whose numerators and denominators are
multiples of the fractions corresponding to the approximations by excess of 
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The JGL( ) transition list fully meets the 2 optimal conditions for having a cycle (cf IV-5-1)

For , the bounds need to be adjusted, and if all the cycles have been verified and searched for ,
then we can affirm that another cycle, if it exists, has a length greater than or equal to  for  i.e.
1054 + 665 = 1719 for 
We realize that it would be necessary to verify the sequence for  to increase the minimum length for a
non-trivial cycle to 25781 for , which may require a very long calculation time.

15. Step by step JGL transition list

We notice that in the previous paragraphs of the JGL construction, the cases are presented in a different order but
correspond to the same thing.

For , as long as  and for , for all , we have :

 if and only if    because the natural logarithm function is increasing.

We can also propose a simplified version of the calculation of JGL( ) :
Javascript code not available in this document.

We get JGL(65) = "11011011010110110101101101101011011010110110110101101101011011011"

Test of the short version of JGL( ) : 65  Try

16. Expression of  of JGL( )

To go a little further, let's try to find an expression  for the boundary transition list JGL
Consider the general case of a sequence defined as follows :
Let , with  and 

 if 

 if 

We realize that the reduced Syracuse sequence corresponds to the particular case  and  according
to the previous paragraph. Keep attention,  is indexed from 1, i.e. the number of "type 1" transtions of JGL( )
is  for 

The condition  is equivalent to  or even , as 

The sequence  will increase by 1 at each step as long as   , therefore

, otherwise, it will remain constant.

Then we have 

In the case of the reduced Syracuse sequence, we have :

For , 

Javascript code not available in this document.

Test of  and JGL( ) : 65  Try

17. Conclusion
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We have found the result of Shalom Eliahou in the case of the conjecture of the standard Syracuse sequence.
For  (or ), by testing the sequence up to  (for  and ), we proved that the
minimum length of a cycle for  is 1539
For  (or ), by testing the sequence up to  (for  and ), we proved that the
minimum length of a cycle for  is 1054

We could stop at this stage, but, in the next section, we will mathematically study some properties of the JGL
transition list to retrieve this result instantly and even have a much faster way to obtain the JGL transition list.

V. Demonstration of the observations of the previous section

This section is a bit more technical and can be perfectly ignored on a first reading by focusing only on the results
obtained computationally.

1. Return to the construction of JGL and the minimum length of a non-trivial cycle

How to determine the minimum length of a potential non-trivial cycle from the transition lists and  ?

We are considering here the case  (or  of the first definition)

We return to the paragraph IV-4

Conversely, if we want to test whether a , non-trivial cycle of length exists, by calculating , the minimum
solution that follows  with the algorithm of "Theorem 0", then all terms up to  and if , we found a
cycle. It is safe to say that it would be better to directly test all the values of 

We can simplify things further, or at least reduce the "testing" time for each list , by imposing that 
corresponds to the minimum value of  for .

In the case of a cycle, we therefore keep only one representative of all the circular permutations of a list, without
loss of generality.

If for a list , we are always in "case 0", or  then  does not correspond to a cycle since .

In other cases, for each step where we are in the "case 1", it is necessary to calculate . If one of the values
obtained is less than  then  does not correspond to another cycle, otherwise, it is necessary to
calculate  to conclude.

We can start by testing for , the smallest value of  for which we are in the "case 1", or

 and the  is of "type 0".

Indeed, if , we can already conclude for  since  and if this is the case for all the
transition lists , then, we can conclude that there is no cycle of length , which is the result that interests us to
reduce the length of a potential other cycle.
For , we can possibly have found several trivial cycle by testing the sequence up to 
We notice that  takes only well-defined values because  is incremented only if  is of "type 1".
Therefore, for a given , we have :

  because the Ln function is increasing

  because 
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We must therefore calculate 

The denominator  is the same for all transition lists that have the same value  and therefore  according

to the previous relation. It is therefore independent of the order of the  first transitions,  being necessarily
of "type 0".

The number of these lists is finite and infact, this number is equal to the number of ways to choose  transitions
among  because  is of "type 0".

There is therefore a list that maximizes  and if for this value, , then we can affirm that
none of these lists can correspond to a cycle since  and we can eliminate them and then consider the lists
which have the first step of "case" 1", the following value of  (and if the previous reasoning is false
especially in the case , we can take ), ie for a value of  equal to .

If for all  such that , (or even ,  being greater than the minimum length for

which there is no trivial cycle) we have this property, that for the maximum value of , ,
then, we can affirm that there is no cycle of less than or equal to 

To be sure that we go through all the steps  defined previously, it is enough to prioritize the transitions of "type
0", ie to make all the transitions of "type 0" possible with the constraint  before adding a "type 1"
transition.

Moreover, in this case,  is maximum for a fixed value of , compared to all other potential lists, because "type
0" transitions are placed as early as possible in the transition list, respecting the constraints of the list. The
demonstration of this property was made in the previous paragraph IV-10.

Thereby, we define the list of transitions which is a boundary, that we note JGL( ) (for "Just Greater List") as
follows :

JGL(1) = "1" or  so that  is greater than  and 

JGL(2) = "11" or  and therefore  because otherwise we find the trivial cycle with

 and then 

For the following steps, this algorithm is used :
m = 2, the number of "type 1" transitions of JGL(2)
For  (we shift the indices to have a preventive action)

if   , then we define  of "type 0" and 

if , we notice that  is one of the previous values of  because .

We test if we can still have a "type 0" transition. In this case JGL( ), would be the list that

maximizes , among all the lists which have as first occurrence of  for .

We calculate  (We will use this notation in the rest of the document
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for this quantity) as if  were of "type 0".  with  because then

If  then  of "type 0" is not possible to respect the constraint

 then we define ,  and we increment . This eliminates all

lists for this value of  to have a potential cycle. By defining , JGL( ) is not part
of this set of lists and is the beginning of the ideal candidate for the following value of

 because  has been incremented.

If  then there may be a cycle of length , this is the minimum
length for a potential cycle for the reduced Syracuse sequence  and the minimum cycle
length for the standard Syracuse  is . This does not mean that there is one. We
leave the loop indicating the value of  for .

With the previous algorithm, we can deduce the minimum length of a cycle.

Initially, we had to test the  lists of transitions... and finally, there are no more only one to test (magical !).

For  less than this minimum value of the length of a cycle, the construction of JGL( ) can already be simpler by

having the property  if and only if   , but it remains a step by step

construction. Using the properties of JGL, we will see that it can be obtained much more quickly in blocks, by
studying these patterns.

This JGL( ) boundary list also plays an important role in this approach of Syracuse theorem for , even
beyond the determination of the minimum length of a cyle, that is why we can study it further.

In case  (or ) :

We can make an equivalent reasoning by symmetry since the list of transitions JGL is the same, it is the one that
maximizes  for all lists of length , this time with .

We return to the paragraph IV-5

We then obtain the following algorithm :

JGL(1) = "1" or  so that  is less than  and . The trivial cycle with  is not interesting

here, since .

JGL(2) = "11" or  and then 

For the following steps, this algorithm is used :
m = 2, the number of "type 1" transitions of JGL(2)
for  (we shift the indices to have a preventive action)

if   , it is not possible then we define  of "type 1",

, JGL( ) = JGL( ) + "1" and we increment 

if , there is always  checking the inequality then ,  and JGL( ) =

JGL( ) + "0"

Only, as  and , to have a cycle of length , it is imperative that
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 must be large enough so that , equality would mean a
cycle.

Therefore, a necessary condition to have a cycle, is , the previous
inequality in the other direction.
If  then it would be a trivial cycle
If  then there may be a cycle of length , this is the minimum
length for a potential cycle for the reduced Syracuse sequence  and the minimum length
of a cycle for the standard Syracuse sequence  is . This does not mean that there
is one. We leave the loop indicating the value of  for .

With the previous algorithm, we can deduce the minimum length of a cycle.

2. Patterns of JGL( )

We prove here that the JGL( ) list has repetitive patterns and this will allow us to construct it in blocks, faster
than in the previous calculation.

We consider the case where  therefore the transition  is of "type 0" if is only if .

For  and , the bound is 
For  and , the bound is 

Next (for ), indeed, there could be a permutation of two successive transitions quite rarely,
which would obviously distort JGL( ) but would have absolutely no impact on the order of magnitude of 
except for the only values of  affected (see remarks IV-10). And then, if we prove by the calculation or the
reasoning that the sequence is verified for greater values of  then the bound will be even greater... and if, finally,
there are no other cycles, then the bound no more exists (infinity).

The previous reasoning made in the case of standard Syracuse sequence is also valid for the generalization. As we
are going to prove that there are no other cycles than the trivial cycles, we can act as if the limit does not exist
even though it is a bit premature.

If  is close to  by excess, then  (with ) is close to 1 by excess because

 then we can clearly sense that the  transitions (called "pattern") can be repeated a

number of times as long as the "type 1" transition (for ), the most likely to turn into "type 0" has not
mutated yet. This breakdown seems more suitable to me than for the approximations of  by defect.

We can set notations for operations on lists :
 : The concatenation of  and 

 :  times the concatenation of , or  =  + ... + ,  times

By the way, we can see it for JGL( ) for  = 1054 and  :
L1 = JGL(1054)
JGL(200×1054) = JGL(210800) = 24×L1 + L2 + 23×L1 + L2 + 24×L1 + L2 + 23×L1 + L2 + 24×L1 + L2 + 23×L1
+ L2 + 23×L1 + L2 + 24×L1 + L2 + 8×L1 + L3

Description of the number of pattern L1 = JGL(1054) :

number of times number of occurences index of occurences
24 4 0,50508,101016,176251
23 4 25781,76289,126797,151524
8 1 202032
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Description of the elements Li:

Li length number of occurences value
index of occurences

L2 485 8 JGL(484) + "0"
25296,50023,75804,100531,126312,151039,175766,201547

L3 336 1 JGL(336)
210464

And you can test it (better for  = 19, 84, 569 or 1054 than for 149 for example) :

Value of  : 200 , Value of  : 1054  Try See/Hide code

But let's prove it :

Determination of the number of "patterns" for an approximation by excess of  :

Let  (with ), an excess approximation of  (see §IV-9), then  is the minimum for 

of , since for all the previous excess approximations of , this value is greater and we do not take

into account values lower than 1 ( ).

Here, we will call "pattern", the list of transitions JGL( ) (or character string)

Reminder : We are in the case where the transition  is of "type 0" if is only if  (or

) because  (or 1538, or 1053) represents the position  of the JGL list.

The transition that has the best chance of "shifting" (or changing type, switching from a transition from "type 1"
to transition of "type 0") is the "type 1" transition which is closest to the condition of having a "type 0" transition.

Therefore we sort in descending order the values  for .

It is immediate that the first values correspond to the values of  such as  always is an

approximation of  for the same reasons.

Let , the index corresponding to the maximum and , the index corresponding to the second value with 
We are looking for , the smallest integer value, such as : 

As long as a transition does not "shift" (or "change") i.e. the pattern JGL( ) repeats, we always have
, for all  and all 

 

 

Therefore, 

We will therefore have JGL( ) =  JGL( ) + JGL( ) + "0" and 

For example, for , we have  and , which gives JGL( ) = JGL(25781) =
24×JGL(1054) + JGL(484) + "0". It should be noted that 25781 is the following approximation of  by excess
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after 1054, by a misuse of language if we consider the sum of the numerator and the denominator.

We can test for N = 1054  Try  See/Hide code

Then, the pattern JGL( ) will repeat  times until we find  such that 

The minimum of  is reached for  but it could be that the same value  is obtained for  (or even
others) and as , it would be this transition that would "shift" (or "change") first (for , it has no impact
because the transition  would still shift before.

If  then it's not possible that  change before  (and a fortiori the others) and then it would necessarily

always be the transition  which shifts, for  but also for  for all .

We can simply note it for the values of  that interest us (corresponding to the approximations of  by excess
between ) with the previous test code.

For example, in the previous test, we see that for ,   .

In fact, we can prove that , that is what we do right away, before determining , to be perfectly

rigorous.

Let's prove that : 

 

 

 

  car 

 

By construction with the Stern-Brocot tree, at each step, we keep the best approximation of  (by defect or by
excess) so the median is always a new bound of the interval in which  is.

As , then, by constructing the median, for the steps between that of  and that of , there are only
approximations by excess, then that of  and then only approximations by excess until that of  which is just a
particular value.

At the step corresponding to , defect approximation, we have ,  doesn't matter.

In the  next steps before that of , we have approximations by excess therefore 

The step  corresponds to  and  and 

In the  following steps until that of , we have excess approximations therefore 
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And so there exists  such as 

Now let's calculate,  =  =  =  because it is a defect

approximation of 

Conclusion : 

Let's resume the search for  knowing that it has been proven that it was always the transition  which shifts.

Thus, to find , we are looking for the smallest integer value such as 

 
 

 

We will therefore have JGL( ) =  JGL( ) + JGL( ) + "0" +  JGL( ) + JGL( ) + "0"

and 

For example, for , we have ,  and , which gives JGL( ) =
JGL(50508) = 24×JGL(1054) + JGL(484) + "0" + 23×JGL(1054) + JGL(484) + "0". It should also be noted that
50508 is the approximation of  by excess following 25781.

Let us show by induction that :

 and therefore JGL( ) = ( ×JGL( ) + JGL( ) +

"0")

The formula is verified for  and 
We assume it's true for  and we prove that it is true for .

To find , we are looking for the smallest integer value such as  because

 

  i.e. the property at rank , which ends the proof.

Conclusion: we can get JGL( ) in blocks, in a much faster way since we can find by calculation the patterns that
had been observed at the beginning of this paragraph.

We can calculate JGL( ) in block with N = 1054  et n = 301994  Try  See/Hide code

3. Quick calculation of  for JGL( )

1. Calculation of  for a concatenation of transition lists
In this paragraph, we use the following notations :
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 has nothing to do in this paragraph with the value corresponding to the verification of the sequence
, a list of transitions of length  with  transitions of "type 1" et  transitions of

"type 0", therefore 

, the multiplicative factor of 

, the "residue" at the end of the transition list 

Therefore,  =  characterizes  which defines the  low-order bits of

, see "Theorem 0" (paragraph VI-2

We can set notations for operations on lists :
 : The concatenation of  and 

 :  times the concatenation of , or  =  + ... + ,  times

a. Case  :

We have:
, , 

 = 

 = 

By replacing  by , we get :

, the  low-order bits of  being defined by  and the  next

bits by  knowing that these are not necessarily (and even generally) the same as for  but the

calculation of  and  matters little to us, it is the value of  that interests us here.

 with  with

b. Case  :

In the same way, since  = , by replacing  with the value of 

previously obtained for , we get :

 with  =

 = 

c. General case  :
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By immediate induction, we have 

d. Special case  :

We have

because  and 

 by changing the indexes.

Then, we have a sum of terms of a geometric sequence of first term 1 and factor 

Moreover, if   1, by setting  then    and   , which is a linear
approximation.

e. General case  :

or more mathematically :

By replacing the sums of terms in geometric progression, we get :

Moreover, if   1, for all , by setting  then   , and in this case :

  

In some special cases   1 for all  and in this case :

  

f. Calculation test of  :
Number of lists : 5

R0 =
3m 0

2N0

n
å

k = 1
fk R k

L0 = nL1

R0 =
3m 0

2N0

n
å

k = 1
fk R 1 =

3m 0

2N0
R1

n
å

k = 1

æ
è

1
F1

ö
ø

k
= R 1

n - 1
å

k = 1

æ
è

3m 0

2N0

æ
è

1
F1

ö
ø

k ö
ø = R1

n - 1
å

k = 1

æ
è ( F 1 )n´ 1

( F1
k )

ö
ø

m0 = n m 1 N0 = n N1

R0 = R1

n - 1
å

k = 1
( F 1 )n - k = R1

n - 1
å

k = 0
( F1 )k

F1

R0 =
1- ( F1 )n

1-F1

R 1

F1 » u1 = 1-F1 ( F1 )n » 1-n u1 R0 » n R1

L0 =
n
å

k = 1
pkLk+Ln + 1

R0 =
3m 0

2N0

æ

è
çç

p1 - 1

å
i = 0

R1

( F1 ) i + 1 +
1

( F1 )N1

p 2 - 1

å
i = 0

R2

( F2 ) i + 1 + ...
ö

ø
÷÷+Rn + 1

R0 =
3m 0

2N0

æ

è
çç

R1

( F1 )p1

p1 - 1

å
i = 0

( F1 ) i +
R2

( F1 )p1 ( F2 )p2

p2 - 1

å
i = 0

( F 2 ) i+ ...
ö

ø
÷÷+Rn + 1

R0 =
3m 0

2N0

æ

è

ç
ç
ç

n
å

k = 1

Rk
k
Õ

j = 1
( F j )

p j

pk -1

å
i = 0

( F k ) i
ö

ø

÷
÷
÷
+Rn + 1

R0 =
3m 0

2N0

æ

è

ç
çç

n
å

k = 1

Rk
k
Õ

j = 1
( F j )

p j

´
1- ( Fk )pk

1-Fk

ö

ø

÷
÷÷
+Rn + 1

Fk » 1 £ k £ n uk = 1-Fk ( Fk )pk » 1-pk uk

R0 »
3m 0

2N0

æ

è

ç
çç

n
å

k = 1

p k Rk
k
Õ

j = 1
( F j )

p j

ö

ø

÷
÷÷
+Rn + 1

k
Õ

j = 1
( F j )

p j » 1 £ k £ n

R0 »
3m 0

2N0

æ
èç

n
å

k = 1
pk Rk

ö
ø÷
+Rn + 1

R0



Maximum length for each list : 19  (for 19 or 84, Fk is always close to 1)

 Identical lists

Try  See/Hide code

2. Application for JGL

According to the paragraph V-3-1-e, we have a general formula for calculating  in the case where

NB : The value  has nothing to do in this paragraph with the value corresponding to the verification of the
sequence.

The formula is as follows :

According to the previous paragraph, JGL( ) is composed of alternating identical lists of transitions, the
last list being a remainder, therefore :

For , , odd index lists are all 

For , , even index lists are all 

,  is the beginning of 

 and   1 because  corresponds to an "approximation" of  by excess
 and   1 because  corresponds to an "approximation" of  by defect

  1, often a compensation with  et 

  

Under these conditions, we have the approximation that  

, for  large enough, which interests

us.

Moreover, the maximum value of    for .

For example, this difference is equal to  for , so

   which is a linear approximation.

This amounts to saying that permuting a few transitions in JGL( ) does not have a significant impact on
the value of 

By considering JGL( ), for all  such as  is of "type 1", we have  therefore 

or  then    for  large enough,
And therefore   
And then, after simplification by , we have the following property :
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1. Property V-3-2-1 : For JGL( ),     

3. If  is such as  is of "type 1", always with  or 1538, or 1053

In this case  and  (0.4113 for , for example)

and then  seems a correct upper bound.

This is verified in the test code of IV-13 for , and then 

Property V-3-3 : For all , in JGL( ), if  is of "type 1", then 

The values of  are given for , they should be multiplied by  in the general case

We can calculate  in block with avec N = 1054  et n = 140665  Try

See/Hide code

4. If  corresponds to an "approximation" of , ie  is an approximation of 

then it is a special case of the previous case,   2 and    and therefore

      , linear approximation, which allows to have the

values of the paragraph IV-13 and of the paragraph IV-14instantly, whereas it required hours, or even days
of calculations, step by step. We find results similar to the errors of precision.

Property V-3-4 : For all  corresponding to an "approximation" of  , in JGL( ),  

The values of  are given for , they should be multiplied by  in the general case

We can calculate  in block for the defect approximations : with N = 1054  and  =
10439860591  Try

We can calculate  in block for the excess approximations : with N = 1054  and  =
93328606422  Try

4. Calculation of VMax( ) for  corresponding to an "approximation" of 

As a reminder,  is the maximum value of  satisfying (In-1), which is 

with  for  and with  for 

We consider the case where  is an approximation of  .

In this case,  represents the maximum value of  for which there may be a cycle of length .

Thereby, if the sequence is verified up to this value, then the minimum length of a cycle is equal to the "next
value" of 

Then, according to the property IV-7-1,  = 
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But,  is on the order of , then   0.

Therefore, we can use the approximation    when   0.

And   

From inequality (In-1), we therefore have :

     with  and  for  corresponding to

an "approximation" by excess of  according to the previous paragraph.

As    and   2, after simplification,

Property V-4-1 :      for ,

"approximation" of 

Note : We can also take as the value of , values that "correspond to defect approximations" of  by changing
the last transition of the pattern JGL( ) for the calculation of . For example, for , we get

interesting results because the precision    or   

We find the results of IV-13 for  and of IV-14 for  near to truncation errors.

Here, the calculation certainly gives more accurate results for large values of  and especially instantly.

With , we especially get :

 for 

.

We will set :
, length of a cycle for 

, length of a cycle for 
, the maximum value for which there may be a cycle of this length

The values of  are given for , they should be multiplied by  in the general case

For values of  corresponding to "approximations of " by defect :

We can calculate  directly with N1 = 1054  Try  See/Hide code

For values of  corresponding to "approximations of " by excess :

We can calculate  directly with N1 = 1054  Try

5. Proof of the experimental result of the paragraph IV-13 for  :

We could be satisfied with the observation of the previous paragraph IV-13 regarding the rows of the table of
results, but we seek to prove it here.
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We consider the inequality, called (In-1),  with 

The goal is to prove that  is a defect approximation of  (defined in paragraph IV-8 with Stern-Brocot tree)

is a necessary and sufficient condition for the maximum value of , called VMax( ), satisfying the inequality
(In-1) increases.

Thanks to patterns of JGL( ), we already have could very quickly calculate  and also .

We remind you that  = 

Therefore    because   , what links the powers and the fractions that

approximate , what often be used.

And (In-1)   with 

If  with  and  is the kth approximation of  par défaut, by defect,

defined in IV-8, then let's prove :

The existence of the step  in the construction of JGL( ) such that 

As  increases from 1 in 1 (increment) in the construction of JGL( ), then the number of steps of

"type 1", which represents the numerator of  also takes all values.

Then, there exists a step with  such that  and for all , .

Then, in construction, the number of "type 1" steps does not vary as long as a "type 0" transition is possible,
therefore we have all the steps  with  and  where  is the maximum value

such that  therefore for , we still have  (and therefore

,  not being rational), therefore the transition of "type 0" is possible and therefore the step

 with  and  is part of the construction of JGL.

However , by definition of , and therefore .

Therefore,  and then by identification, necessarily  and we

indeed have the step  with  and  which is a JGL step, such that

Sufficient condition : VMax( ) > VMax( ) for all 

 for all  because according to the property V-3-2-1 (  

),  is proportional to  and .
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However,  for all  because it is the last step

and  for all  because  since it is the best defect

approximation of the Stern-Brocot tree

 for all , by definition of 

therefore  for all 

The conclusion is therefore immediate, the numerator being the largest ever reached and the smallest
denominator ever reached.

Necessary condition

Here, we prove that VMax( ) is solely related to the quantity  and therefore a necessary

condition for VMax( ) to increase, is that the  correspond to the defect approximations of  or

 for 
Either, for all , we have 

We assume that this result has been verified by calculation for all  (or even 10000), in order to be

able to use the equivalence of the property V-3-2-1, either : For JGL( ),   

(In-1)   with 

  = , or more precisely, the integer part of this

expression.

But,  =  with

Case where  is close enough to 0 to use   

 

As   

We notice that  and  therefore

For all , , by definition
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If  then  too and we indeed have

If  then  is a multiple of , i.e. there exists  ∈ ℕ, such as

,  and  and therefore , but 

therefore  and finally , even in the best case where

there is  pattern repetitions JGL( ) to a few transitions permutations, which does not affect
the calculation of

Case where  is not close enough to 0 to use   

Then  with , for example

because    is already a sufficient relative precision to apply the

equivalence.

        

   because 

, with  therefore

 is of the order of 
For ,   4.31

But for ,  (see IV-8, maximum reached for ),

therefore  is of the order of  in (at least) the interval that interests us.

And    according to the property V-4-1

Therefore  is of the order of  (for , what

interests us here)

    , which is always true

because  and  satisfies this inequality for  and it's true with the true values

(without an upper bound by 6) for  but anyway, it is assumed that the necessary condition has
been verified for )

Conclusion : The necessary condition is indeed proven

Finally, the experimental results have been proven, we were also able to find an instantaneous method to
determine JGL( ) and calculate , which took a considerable amount of time (see the program in
paragraph V-4).
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6. Proof of the experimental result of the paragraph IV-14 for  :

We could be satisfied with the observation of the previous paragraph IV-14 regarding the rows of the table of
results, but we seek to prove it here.

The goal is to prove that  is a excess approximation of  (defined in paragraph  IV-9 with the Stern-

Brocot tree), as well as some reducible fractions representing an approximation by excess, is a necessary and
sufficient condition for the maximum value of , called VMax( ), satisfying the inequality (In-1) increases.

We could provide an analogous demonstration to that of the previous paragraph.

We will focus on explaining the emergence of reducible fractions equal to excess approximations.

Indeed, the Stern-Brocot tree only gives irreducible fractions !

We saw that JGL had "patterns" of lengths equal to  ("approximation of  by excess") which repeated
themselves a number of times, noted .

For  and , we have  since  since the fractions are

equal.

According to the formula of the paragraph V-3-1-d, we have  for 

But as  because it is an approximation by excess,

then, for ,     

and finally , therefore the  lines should appear in the table.

If they do not appear it is related to truncation errors in the calculations. We can vary their emergence by
manipulating the precision of the calculations.

Anyway, the value of    therefore we can eliminate them.

Moreover, if there was a cycle of length  then multiple lengths  would represent a non-minimum cycle.

Only the irreducible fractions are intertesting for significant increases of 

VI. Search for cycles :

We have already demonstrated the importance of the list JGL( ) in the previous sections to determine the minimum
length of a non-trivial cycle.

We will recall the results and establish a simple function to determine the minimum length of a cycle for  depending
on the verification of the sequence.

Next, we will focus on the localization of the elements of a potential cycle of length  and we will get new and very
interesting results.

We limit ourselves to the study of the cycles for which 
Indeed, if we get a cycle with ( , ), then for any odd non-zero integer , we also have a cycle with ( , )
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For , the results are valid for . This would be easily generalizable for larger values of , with the
minimum value of  increasing slowly.

We will prove that the elements of a non-trivial cycle of length  for  are in the interval 
for  with , by using :

The "Theorem 0" to prove that the elements of a potential cycle are less than 
(for  and, by symmetry for , greater than  for  with ).
A very robust statistical method (linear correlation coefficient greater than 0.999) to prove that the minimum
element is greater than  (for  and, by symmetry for , the maximum element is less than )
for .

We can then conclude on the possible existence of other cycles.

Note: According to the proof of "Theorem 1", it is easy to show that revolutionary numbers (which are the solutions to
"Theorem 1", from which we obtain almost a cycle), are the minimum solutions or not of the lists of transitions

 for which  is an approximation of  by defect or by excess.

1. Summary on the minimum length of a non-trivial cycle :

1. Recap of the results :

We have seen how the transition list test JGL( ) made it possible to know the minimum length  of a
potential cycle for the reduced Syracuse sequence .

In the section IV, we found this length, simply by doing tedious calculations using a computer

In the section V, we proved the experimental results by studying more precisely some properties of JGL( )
and this made it possible to obtain the result very easily.

It turns out that this minimum length for a potential cycle depends on the maximum value 
(minimum for ) for which we know that the sequence has been tested.

The length limit is increased for certain only if the verification has been made up to the value  for 
corresponding to the defect "approximations" of  (by excess for ), more precisely when 

and  is an approximation of .

With the tests for the standard Syracuse sequence, the result of Shalom Eliahou was found again, namely
that the minimum length of a cycle is   for , which represents a length of
186265759595 for .

Given the search for trivial cycles for , with  in the case  (see paragraph III),
we are assured :

For , the minimum length of a cycle is 1539
For  (or ), the minimum length of a cycle is 1054

Maximum values of  in the following tables are given for  and are to be multiplied by  if .

We find the non-exhaustive table below (  is the minimum length for the Syracuse sequence ) :

For 

max for 

27 44 26.6994

46 75 28.1032
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N
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65 106 29.7436

149 243 211.2271

233 380 212.2368

317 517 213.1703

401 654 214.253

485 791 216.1354

1539 2510 217.8632

2593 4229 218.6816

3647 5948 219.2426

4701 7667 219.6813

5755 9386 220.0495

6809 11105 220.3727

7863 12824 220.6657

8917 14543 220.9379

9971 16262 221.1959

11025 17981 221.4446

12079 19700 221.6882

13133 21419 221.93

14187 23138 222.1737

10439860591 17026679261 267.0843

114208327604 186265759595 271.4131

6048967074079039 9865440379489587 2100.3901

4055842426088317893144813378287 6614794088504882375744109248036 2200.3751

For 

max for 

3 5 -21.5850

11 18 -24.6439

19 31 -27.7279

84 137 -212.5758

569 928 -216.3061

1054 1719 -221.8053

25781 42047 -227.1956

50508 82375 -229.9750

766512153894657 1250127478260940 -299.7182

9881527843552324 16116077770794287 -2107.8222

2. Upper bound of  with the maximum value of    :
We set , the exponent of the maximum value of  according to .
The local maximum of  are obtained for the values of  corresponding to the defect "approximations"
of  (by excess for ), therefore we can take these points to upper bound 

v0 < 0

N Nu v0

f(N) v0 » 2 f(N) + B1

f(N) v0=2 f(N) + B1 N
f(N) N

X v0 < 0 f(N)



But, in these cases of defect approximations of , we can apply the property V-4-1 where we have :

max( )  .

However, without using the best approximation theorem for continuous fractions which upper bounds the
absolute difference, we can say that certainly  with , this lower bound can be modified
without changing the reasoning.

We also have  for  large enough.

Therefore max( )   

And therefore  with

, a change in the value of  does not change anything.

In the tests :
this is the code of the paragraph V-4-1 with the displaying of additional columns in the results
Maximum values of  in the following tables are given for  and are to be multiplied by  if

.
N1 = 1054

 such as   

diff_exp2, the difference between two consecutive values of 

For  :Test of the approximation of  : Try

For  : Test of the approximation of  : Try

3. Upper bound of the difference between two consecutive values of  for  an "approximation of "

It is noted, in the previous test regarding the defect approximations
, but also in the previous test regarding the approximations by excess, that the difference between 2
consecutive values of  is always less than 10.

For the defect approximations :This difference is even less than 3 for 

For the excess approximations : This difference is even less than 6 for 

This means that it only a few additional bits are needed for the maximum values of  (up to the sequence is
verified), to change level and have another minimum length value for a non-trivial cycle.

4. Lower bound of the minimum length  of a cycle if the sequence has been verified up to 
Conversely, if Syracuse sequence has been verified for , then the minimum length of a potential
cycle will be exponential.

And we solve 
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For , we find , which is consistent with the

previous table, the lower bound of  is large.

This relatively large lower bound is obtained in the general case and could be finer for specific values of 

Property VI-1-4 : If Syracuse sequence is verified up to  (with ), then the minimum

length of a cycle (not trivial) is , for the reduced Syracuse sequence

2. "Theorem 0"

Statement :

For any list of transitions L (of any length N), there exists an infinite number of roots (values of ) whose first
transitions with the reduced sequence of Syracuse  are those of the given list L.
There exists one and only one root  in the interval [0, [ and the other roots are of the form 
with n > 0

I) Notations and definitions :

First, let's define some elements and specify some notations

a) Trajectory of length  for :

A trajectory of length N is a list of "type 0" or "type 1" transitions, therefore a word composed of 0 and 1

We will set , the number of "type 0" transitions and  the number of "type 1" transitions and :

For example :

With , we have  = 7 =1=> 11 =1=> 17 =1=> 26 =0=> 13, the trajectory is "1110"

Instead of considering a trajectory as a word on the alphabet {0, 1}, it can be seen as a number in binary format,
written with the least significant bits on the left.

For example "1110" translates to  = 7.

Definition : A trajectory for  is named  =  where  is the type of transition .

It is a number strictly less than 

b) Extension of  for 
This extension, to standardize, simply allows having  as a solution of  = 0 for any value of  instead
of  and therefore simplify the reasoning.
It's not about having another trivial cycle of length 1 starting from 0.

II) Proof :

Another proof, different from this one, written with another approach is also available.

1) Let us prove that there is one and only one solution  in [0, 2N[ such that  follows a given trajectory 
.
That is to say that there exists a bijection between the trajectories and the solutions which follow them in the set
[0, [.
Main ideas of the proof :
- the parity of a number is a local property that only depends on the least significant bit (bit 0) and therefore  is
even for n > 0.

n = 68 N =
17179869184

4 = 4294967296 < 10439860591

C

n

v0 = 2n + B1 n ³ N0

N >
2n / 2

4

v0
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N = m+d v

d m N = m +d

v v0
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N - 1
å

i = 0
t i´2 i t i i

2N

v v0 = 0
v0 = 0 TN N > 0

2N

v0 v0 TN

2N
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- the transitions  for i < n only depend on the (n-1) least significant bits of  or that the transition  depends on
the result of the previous transitions on the  least significant bits of  and on the bit  of , this is the new
idea about the Syracuse sequence.

We prove this result by induction.

a) Let's verify that the property is true for  :
For , the only two trajectories of length 1 are "0" or "1" for  of "type 0" or "type 1"
Thanks to the extension of  for ,  satisfies "0" (in this particular case, we could have taken 

and define a bijection between [0;2N-1] and [1;2N])
And  satisfies "1" because 1 is odd.
So the property is true for 
b) Let's prove that if the property is true for , then it is true for 
We consider , a trajectory of length  or list of transitions of the sequence  with  elements.
A solution which follows  must necessarily follow , the sub-trajectory of the first  transitions of ,
this is a necessary condition.
Since the property is true for , then there exists one and only one   following .
Let's take  with a ∈ {0, 1} so 
The term  if  or  if  and this term therefore remains even for all the first 
transitions of , since we divide by 2 at each transition (even if we have a "type 1" transition)

Let's detail the first transition :

 has the parity of  linked to  ∈ {0, 1}

If  then  is even (because  follows ) and 

If  then  is odd (because  follows ) and

 has the parity of  which follows ...

We can easily prove by induction that :

For all ,  = a×3mn×2N - n +  with , the number of "type 1" transitions in the sub-trajectory of
the first  transitions of 
We have verified this property for  (with ) and for  and the rest of the reasoning for this
recurrence is also very simple.

By reiterating the reasoning, after  transitions, or by using the recurrence formula, we have :

If  is the number of "type 1" transitions of  then

, this is the key of the reasoning.

Two cases are possible for the transition 
1. If  then  follows the trajectory  if and only if  is even:

If  is even then  is even if and only if  and  follows 

If  is odd then  is even if and only if  (because  is odd) and  follows 

2. If  then  follows the trajectory  if and only if  is odd:

If  is odd then  is odd if and only if  and  follows 

If  is even then  is odd if and only if  (because  is odd) and  follows 

t i v0 tn

n -1 v0 n v0

N = 1
N = 1 t0

v v0 = 0 v0 v0 = 2N = 2

v0 = 1 < 21

N = 1
N N+1
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2
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3 v 0 (a)+1

2
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3 ( a´2N+ s 0 )+1
2

= a´3´2N - 1+
3 s0+1

2
= a´3´2N - 1+ s1

v1 (a) s1 t1

0 £ n £ N vn (a) sn mn
n TN

n = 0 m0 = 0 n = 1

N

m TN

vN (a) = a´3m + sN

N+1
tN = 0 v0 (a) TN + 1 vN (a)

sN vN (a) a = 0 v0 (0) TN + 1

sN vN (a) a = 1 3m v0 (1) TN + 1

tN = 1 v0 (a) TN + 1 vN (a)

sN vN (a) a = 0 v0 (0) TN + 1

sN vN (a) a = 1 3m v0 (1) TN + 1



Conclusion: The property is true for , which completes the reasoning by induction.

2) Infinity of solutions that follow a trajectory 
To prove that there are infinitely many solutions in ℕ just consider the values:

 with n ∈ ℕ where  is the solution that follows  with  according to 1)

because, by construction,  follows  and 

The proof of this theorem is done in the standard case but it is generalized without any difficulty for any .
We can even generalize this theorem by taking any positive odd coefficient  instead of the restrictive case 3 by
considering :

with  and 

End of the proof of Theorem 0

Only for the following tests : a3 = 3 , b1 = 1

Search for minimum  for the list : 10001001110100111011  Try

Search for minimum  for a random list of maximum length : 50  Random test See/Hide the code

3. Location of elements of potential cycle using the "Theorem 0"

We set  the minimum solution in absolute value which follows the transition list  for 

Here, we take the extension with  instead of 

According to the "Theorem 0", we know that  ∈  and that all the values of  which have as first
transitions those of  are of the form :  with  and 
Therefore  = 

We limit ourselves to the cycles for which  and  are coprimes i.e. gcd( , ) = 1.

If we have a cycle from  then 

Therefore      for . The case  is trivial.

If  then  which means that we have a cycle from 
If  then  because we optionally take the option  and . Of course, it is necessary
that  ∈ .

Moreover, it is necessary that 
Therefore that  , while maintaining .

According to the results of IV-13 which gives more accurate results for small values of  that in the
previous paragraph (paragraph IV-14 for )
As a reminder with  and  is to be multiplied by  :

N+1

TN

V0 = s0+n´2N s0 TN s0 < 2N

V0 TN VN = sN +n´3m
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ï
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ï
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ï
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2  if v n  is even (transition of type 0)

vn + 1 =
a3v n +b1

2  if vn  is odd (transition of type 1)

a3 = 2a +1 a ³ 0

v0
v0

V0 L (N, m , d) b1

b1 < 0 v0 < 0

V0 ] 0    2N  [ v0

L (N, m , d) v0 = V0+a´2N a ³ 0 vN = VN+a´3m

vN- v0 VN-V0+a ( 3m -2N )

b1 V0 b1 V0

v0 vN = v0

vN- v0 = 0 Û VN-V0 = a ( 2N-3m ) Û a =
VN-V 0

2N-3m N > 1 N = 1

VN-V0 = 0 a = 0 V0

VN-V0 ¹ 0 a > 0 b1 < 0 v0 > 0
a ℕ

v0 = V0+a´2N < VMax (N-1) < 2 f(N) + B1

a´2N < VMax (N-1) V0 > 0

N
b1 < 0

b1 = 1 VMax (N-1) b1
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8 24.54 ~ 24.617

27 108.01 ~ 26.755

and for 

11 27.10 ~ 24.760

19 219.31 ~ 27.777

In the standard case ( ), we always have  therefore the case  is not possible.

As for , we have .

For , we always have  then the case  is not possible.

For  and  or for  and , it may be that in some cases, we can have solutions for a
cycle without it being the minimum solution .

We can revisit the results obtained by looking at when the maximum value of the cycle is greater than  to

see that we are always in this case  where  is the minimum solution for the

list  with this maximum value as the first value of the cycle.

It can be noted that in even rarer cases, this is the case even for the minimum value of the cycle and
therefore all the elements of the cycle are of this form.

The table gives all the cases where the value is not the minimum solution for the transition list.

Structure of the table :
 (minimum value of

cycle)
List
List of values of the cycle

 (cycle value greater than 
)

L
 (must be equal to this 

)

For  See/Hide results

Results at the end of the document
See the results

For  See/Hide results

Results at the end of the document
See the results

If we have a cycle for , then the only solution is the minimum solution  which follows the list
of transitions , in the case where  with ).

Taking the  circular permutations on this list, we have the following property :

Property VI-3 : If  has a cycle of length , then all the different elements of the cycle { , ..., }

satisfy  for  (for  if )

4. Probabilistic reasoning with the fundamental property :

b1 < 0

N VMax (N-1)

b1 = 1 VMax (N-1) < 2N a ¹ 0

b1 < 1024 B1 £ 10

N ³ 27 VMax (N-1) < 2N a ¹ 0

N < 27 b1 > 0 N < 19 b1 < 0
V0

2N

V0+a´2N = V 0+
VN-V0

2N-3m ´2N V0

L (N, m , d)

b1 v0 N

2N-3m

v0 2N
V0 VN a

vn v0

b1 > 0

b1 < 0

L (N, m , d) V0

N ³ 27 b1 < 1024

N

v N v0 vN - 1

vn < 2N 0 £ n < N N ³ 27 b1 < 1024



1. Determination of the number  of possible candidates  for a cycle of length N :

1. Special case :  is an "approximation of "

For ,  corresponds to a defect "approximation".

For ,  corresponds to an "approximation" by excess.

According to the location of the values of a cycle of length  (previous paragraph VI-3), all elements
 are less than  and are also the minimum solutions of a list L  for  and .

Counting the number of possible  amounts to counting the number of lists L  with the
bijection of "Theorem 0".

The number of lists L  is easy to count, it is the number of ways to place  values "1" (or 

values "0") in  positions, which corresponds to the number of combinations 

with , so the factorial of .

If we take into account that cycles would be equivalent and can be identified by their smallest element
(or their largest element if ).

If we set  the number of  possible candidates,  minimum (  maximum if ) for the
cycle they represent, we have :

2. General case : Any 

For  : But we can easily count the exact number of possible candidates (or number of transtion
lists) thanks to the JGL( ) boundary list (described in IV and V) which is the limit list which ensures
that for all ,  and  minimum since "type 0" transitions are prioritized, among all lists
verifying for all , 
Symmetrically, for  : we can easily count exactly the number of potential transtion lists thanks to
the JGL( ) boundary list which is the limit list which ensures that for all ,  and 
maximum since we prioritize "type 0" transitions, among all the lists verifying for all ,

In fact, the possible candidates are the solutions of the lists L(N, m, d) for which at each length
, the number of "type 1" transitions for the  first transitions in the L  list is greater

than or equal to that for the JGL( ). Moreover  must be equal to , the number of "type 1"
transitions of JGL( ).

For  : For values of  corresponding to potential cycles (to better approximations of  by

defect), we modify the last transition of JGL( ) by shifting it to "type 0".

We can create a diagram by representing the number of "type 1" transitions on the vertical axis.
Transition lists are then paths with movements upward or to the right (toward the North or toward the
East). The valid transition lists are those that remain above the JGL boundary and end after  steps at
the same point as JGL( ).

The blue line represents the boundary JGL
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The green line corresponds to a valid transition list because it is always above JGL
The red line corresponds to a list of transitions that is not valid because it passes under JGL
The black line corresponds to the boundary for "words of Dyck" (or Catalan's triangle)
The large green dot is the ending point of the valid transition lists (at the same location as the
one for JGL( ))

0

Algorithms for counting solution lists (they can also be used to generate them exhaustively) :
Recursive method : We construct (or simply count) the list to the depth  maintaining its length
and the number  of "type 1" transitions.

If, for the length ,  is greater than or equal to the number of transitions of "type 1" of
JGL( ), then we can add a transition of "type 0"
If, for the length ,  is strictly less than the number nmax of "type 1" transitions of JGL(

), then we can add a transition of "type 1"
Method with memorization of the number of lists  for a length  and a given number of
"type 1" transitions .

We have :

 for 
The elements are constructed for  from those of  as follows :

 for 
 +=  for  (possible addition of a transition of "type 1")
 +=  for  (possible addition of a transition of "type 0")

The number of lists we are interested in is 

This method is much faster.

This reminds the words of Dyck or Catalan's triangle[5][6] with  times the letter Y (y-axis of the
coordinates) and  times the letter X (x-axis of the abscissas) to retain only the paths "above" of the
bisector, with always more letters y than x in the "sub-words"

We use the formula proven in the English Wikipedia page about Catalan's triangle[6] for  Y and  X :
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C( , ) = 

By replacing  by ,  by  and  by 

C( , ) = 

As the JGL boundary is above the first bisector, because , it is therefore more selective for the
possible paths,

We have the immediate upper bound :

3. Upper bound of  for large values of 

As the minimum length of a cycle is at least 1000, it is wise to have an upper bound in this case.

When  is large, ,  and  and therefore :

  

We will therefore take , already with an upper bound of a factor of at least 2

In paragraph IV-16, we saw that 

Then  for 

Let's look for an equivalent of  when  large enough :

 =    =  = 

We can use the Stirling formula :    for  large enough (  for a relative
error of ).

As , we have :

  

   after simplifications

As  for  large enough, and  with  

1,70951129135

  

 

   after simplifications
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To get the number of bits of , we divide by 

We obtain a number of bits close to    < 

Therefore    < 

or   

Then, , the upper bound is already very large (639 times greater for 
, 438 times greater for  in case  than the number of Dyck words).
We will take this approximate value by excess :

 for .

Remarks :
Taking this large upper bound, it is as if we are making no restriction on the paths and taking the

 transition lists and therefore that we did not consider  minimum
(  maximum in case )

In the case that  corresponds to an "approximation" of , then  and therefore

4. Test

Test for the length N : 65  Try  See/Hide code

For N = 65, clicking on the "Try" button, we get the line : "Number of lists for cycle : ~ 252.44 ~
20.81×N = 6113392816333320"

Then we get the following results (even with a few couples , marked with *) :

Number of transition lists with  

19* ~ 211.37 ~ 20.60×N = 2652
27 ~ 218.25 ~ 20.68×N = 312455
46 ~ 235.15 ~ 20.76×N = 38036848410
65 ~ 252.44 ~ 20.81×N = 6113392816333320
84* ~ 269.93 ~ 20.83×N = 1122428422670255691408
317 ~ 288.40 ~ 20.91×N = 656806675415484094200100898233709221596805033311728420917526
401 ~ 2367.69 ~ 20.92×N = 48419144899448414091448740183599746637523196430021069231903
485 ~ 2447.07 ~ 20.92×N =

38176868759050134271911329690220347628482378391118516565097049761310997707549
1054* ~ 2985.92 ~ 20.94×N

1539 ~ 21445.83 ~ 20.94×N

14187 ~ 213456.06

25187 ~ 224468.55
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We can verify that for these different values of , we have 

Remarks :
In the case of the standard Syracuse sequence, we found that the minimum length of a cycle is

.
Generating a list randomly is possible (we can even construct it step by step), testing this single list, ie,
check if , is already out of reach with my personal computer, but we would have to test 

    lists which is unrealistic. Furthermore, we would then need to start
again for all the possible values of ... this is certainly not the right method of reasoning.
If we take as a value of , a value that corresponds to an "approximation" of  by defect or by excess,

×  represents the number of revolutionary numbers. Thus, we can distinguish between two
notions, rarity and abundance, which are not antinomical.

2. Property VI-4-2 : The probability of "  even" is 

This property is commonly accepted but let's take a look in the standard case.

It is only to observe the "shuffling" of the bits for potential encryption applications.
For , we will accept this property.

If  and , then it is enough to consider the decomposition in base 2 of  to get the
similar result.
If , then :

If , then there exists  such as  and we can reduce it to the previous case by
changing  and  in their opposites

If , then  and we should consider the subtraction...

In the property, we can add the equiprobability for each bit to be equal to 0 or 1.

This is true when we are in the reduced trivial cycle {1,2}, we consider the case .

Let's do a reasoning by induction.

It's true for , since  is arbitrary.

We assume that the property is true at rank  and we prove that this is true at rank .

Let  with  or , its decomposition in base 2.

If  then  is even and  with  therefore  has the

parity of  which is equiprobably 0 or 1. For the other bits, the equiprobability is direct.
If  then  is odd and

 with
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Therefore  has the parity of

 which is equiprobably 0 or
1.

For the other bits :
If  then  is equiprobably 0 or 1.

If  then  is equiprobably 0 or 1.

This proves the property at rank  and therefore, in particular that the probability of "  even" is 

3. Distribution of the values of , solutions of candidate lists

Here,  represents the minimum solution for a candidate transition list

1. The probability that  is 

Notations :

 is the minimum solution for the L

(for  and , this is the only solution that allows you to have a cycle)
 is the minimum solution for the  first transitions of a list L

 is the current value obtained after  steps from the minimum solution 
 is the probability that the last transition  of the L  list is of "type 1"

We accept that the value  (the current value after  steps from ) has an

equiprobable parity (  to be even,  to be odd)

If ((  is even and  is of "type 1") or (  is odd and  is of "type 0")) whose

probability is , which is independent of ,

then the last transition is not natural ( ), i.e.  does not match the type of transition

obtained from and then the minimum solution is  =  +  (according to VI-2)

and 

Conversely, if ((  is even and  is of "type 0") or (  is odd and  is of "type

1")) whose probability is , which is independent of ,

then the last transition is natural, i.e.  corresponds to the type of transition obtained from

and then the minimum solution is  =  (according to VI-2) and 

So the probability that  is equal to 

Repeating the same reasoning for the  last transitions,

The probability that  is equal to 

 =  if and only if the  last transitions are natural from  and the

probability is 

vn + 1
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Conversely, the probability that  is 

It remains to determine for which values of  this relation is valid.

2. Values of  which loop in a trivial cycle for a list

The previous reasoning would not hold for the values of  that loop in a cycle for a candidate list of
transitions.

It is therefore important to consider these potential cases.

In the standard case, for any candidate transition list, as we have  for all  and that the
JGL list begins with the "11" transitions (to avoid the trivial cycle and therefore ), we are
assured that the value  is never reached and therefore we are not in the trivial cycle even if the
list of transitions ends with a large number of alternations "10"

For , by construction, the JGL list already eliminates the values of  which are the minimum
values of the trivial cycles since it is necessary to "modify" the last transition into transition of "type
0" to have a cycle because we always consider for , the minimum length of a cycle, which
corresponds to an "approximation" of .

For , if the minimum values of a trivial cycle form a cycle too, this would mean that  is a
multiple of this length, which is not interesting. But it is mainly impossible because it would take
exactly the same proportion of "type 1" transitions (for example) and the Stern-Brocot algorithm gives
irreducible fractions.

It remains to identify the lists for which we can reach a trivial cycle from an initial value lower than
the minimum value of the cycle.

This phenomenon must be quite rare compared to the number of lists , but we will study it more
precisely in the study of the divergence (paragraph VII-2) by revisiting the results obtained for

But for these values, the proportion of transitions should be identical to that of JGL and then, at the
end, one or several transitions allow you to return to the initial (strictly lower) value, which would
break the cycle. This break is equivalent to at least one high-order bit in  and therefore  can not be
less than the minimum value of the cycle.

Conclusion : Such lists are not candidate lists to have a cycle of length , the minimum possible
length, which necessarily corresponds to  "approximation" of 

4. Upper bound of the number of 

As  is very large and even as long as  is large, then we must approach a distribution of 

close to the probabilities. Even if the Syracuse sequence is perfectly determined from  and it is therefore
not a random phenomenon, but very deterministic and mechanical, it is interesting to see it as a random
phenomenon, which follows a probability distribution.

What seems chaotic to us for a value of  (or a transition list) is no longer at all when looking at the whole.

In first approximation, to get an idea, by looking at what happens from the last transitions, we can say that
the  are distributed as follows :
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 are in 
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 are in 

and therefore  are in 

And as  for  "approximation" of 

then     

All  should be greater than à , or perhaps there are marginally a few exceptions in the
very last values of , when    because the number of remaining values is too small to have a perfect

result... the  steps can even still be used as a margin of error.

Let's make a more rigorous argument to upper bound the number of remaining transition lists (for which
) :

We can see  as a Bernouilli trial of parameter , optimal parameter for the application of

statistical results.

For the last transition :

If we consider , the number of times that  (for transition ) for all the  lists of

transitions, it is then a binomial distribution and 

converges to the standard normal distribution (for  because ).

Moreover, we have P( ) > 0.9999 (since in the tables of the standard normal distribution, the value is
1.0000)

We can consider that we are in this case to upper bound the number of remaining , i.e. the number of
 for the candidate transition lists. If that were not the case, it is not a problem since we will apply

the same reasoning for the previous transitions.

However   

Let  this upper bound of  and  the initial number of candidate lists.

If  then we can always use the convergence towards the standard normal distribution (because the
limit of use is close to ) and 
We can always use inequality  even if the upper bound becomes imprecise for  because

  2.74

, the upper bound using the exponential which allows an easier

chaining
We can follow exactly the same reasoning with the transition  with the same formalism, as long as the
number of remaining lists is sufficient.

We have 
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However  =  because 

Therefore  =  = 

Starting again with the same formalism for , as long as we can use convergence towards the standard
normal distribution, we have :

 with 

This result can be proven by induction, the formula being verified for  and .

If we assume that it is true for , we prove that it is true for 

However  =  because 

Therefore , the property is verified

We can improve the expression of  with the last upper bound of 

Let  such as , we lower bound  by a power of 2.

We are assured that  therefore we can use the formula related to the convergence towards the
standard normal distribution.

  

i.e., when we have taken into account the  last transitions, the maximum relative error is 35.2% compared

to the approximate value , which makes the error less than a "step" !

We can say, by analyzing the  last transitions, that the number of values of  is less than 2048.

The upper bound  is still true but becomes too large.

However, until , the convergence towards the standard normal distribution is theoretically valid and
this allows us to use the decreasing upper bound for a few more steps without using the exponential
function.

We then have  (we take ) and for , we use the upper bound obtained at the

beginning of the reasoning  as long as 

We then obtain the following decrease :
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6 94
7 67
8 50
9 40
10 33
11 28

We can say, by analyzing the  last transitions, that the number of values of  is less
than 30.

Then, we have no mathematical basis for conclude, apart from the fact that the Syracuse sequence is not a
random process but a deterministic process. Indeed, once the lists of transitions have been determined,
testing them any number of times will always give the same results. And the mechanism has no reason to
change because it remains a reduced set.

Let's examine, the maximum possible number of transitions  so that no more value of  is less than 
or that none of the remaining 30 values remain after  steps.

We have , donc  then 
We are looking for the maximum value of  such that 

then 

In the case of the standard Syracuse sequence, the minimum length of a potential cycle for  is greater than
or equal to 114208327604, then  whereas 5 would be sufficient in absolute terms because

, even if 2 or 3 additional steps, at most, could be possible.

For , as  (1539 for  and 1054 for ), we have at least 13 or 8 steps respectively.

Moreover, if  corresponds to an "approximation" of , we still have  possible

additional steps !

We can therefore affirm that the minimum value of , for all candidate transition lists, is greater than 

We will see experimentally that the modeling by taking the remaining number equal to  is very robust

with a linear correlation coefficient more than 0.999 in absolute value if we consider the natural logarithm
of the remaining count.

For  and , we have , which means that the minimum value of  is greater than

That's already sufficient, but let's reconsider the reasoning differently by eliminating the computational bias
that involves reducing the number of transition lists to be tested and therefore to consider minimum 
(  maximum for )

Indeed, if we consider the  transition lists, then to have a cycle of length , it is then necessary that 
values of  (the  elements of the cycle, since  is no longer minimum (  maximum for )) be
solutions.

As  with the tests performed for the verification of the sequence, we can easily use the upper
bound with the exponential for the  last steps and the convergence towards the standard normal
distribution for the following 2 transitions which make it possible to guarantee that the number of values of

 is approximately  from the previous table.

Therefore, the result is ensured by taking into account the  latest transitions.
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As we have , then  for  (with a few units of
margin which are almostequivalent to dividing the remaining count by 2 each time) then all the elements of
a cycle are greater than 

All values of , from which we could have a cycle, satisfy  for 
 and for .

Remark : This reasoning can be generalized by considering    (not necessarily close to 1). It is then

sufficient to consider the  lists of transitions L  and we can have a distribution of the  solution
as well as an order of magnitude of the minimum value.

5. Summary on the existence of cycles

According to the paragraph VI-1-2, summary of the minimum length of a cycle, we saw that the maximum value

of  was less than  =  with  (even if we know that  increases by jumps

at each "approximation" of  and is much lower for the other values of )

According to the conclusion of the previous paragraph VI-4-4, we have that the minimum value of , for all the
transition lists that may correspond to a cycle, was greater than  in the case where 
for .

If , then there can be no cycle.

Which is equivalent to  > 

We derive to study variations on  :  for  (then  is

increasing on )

However   16.06 which is therefore the minimum of  on 

In the standard case, as , we have , then there is no other
cycle.

As  for , inequality is verified. As  and , this would still leave
at least 26 or 8 additional steps, for cases , respectively , for the approximation of  and
therefore there are no other cycles than the trivial cycles.

However, the upper bounds are large because for  and , we have , which means 
or  in all cases of 
We could also have tested the sequences with  instead of  and minimum lengths would have been

 for  and  for , which would have required to a bit more preliminary calculations
but would also have allowed for a much more comfortable margin (more than 700 because 
and  while ).

Conclusion : There can not be any cycle other than the trivial cycles for .

We can notice that we do not use the necessary and sufficient condition, which is even more restrictive, namely

It's already quite extraordinary that by fixing only 5% of the bits (0.05×N low-order bits set to 0 or 1), we can
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have   1, ie the last 95% transitions are done naturally.

There exists no other cycle, but values of  can be found that create "almost" cycles with relative error as low as
we want; the details are in the paragraph IX-1, this is "Theorem 1".

6. Experimental results

We randomly test candidate transition lists L  to possibly obtain a cycle even if for some values of ,
there could not be a cycle except for .
The chosen transition lists are "above" JGL(N) and we can see the distribution of , this is what primarily
interests us.

For small values of , the calculations are exhaustive, which makes it possible to see the evolution of  at the

end, in real condition, to see that it is a very deterministic process, far from a coin toss.

Obviously, for larger values of , the number of lists tested is very low, the test is not exhaustive, far from it !...
but this allows us to see that on random samples, the statistical method for the distribution of  is very robust
(linear correlation coefficient greater than 0.999)

In the results concerning the distribution of , here is what represents :
 : the number of lists to test for , i.e. 312455 for 

, the effective number of  such that  (i.e.  - NbBits( ) = )
, the effective number of  such that 

, the approximation of  at 4 standard deviations by approximating with a

standard normal distribution

 with 4 standard deviations by accumulating the approximations

, the ratio with the theoretical central value

Below the following section allowing the tests (same code as for the sequence test at the end of the document), are
the complete results for 

Choose the value of b1 :  OK  (odd relative integer,  can be negative and  is always positive)

Random tests for cycles :  : 17  pendant 1 minute  Try Stop  Previous results
Statistics on 
Addition of statistics on the transitions
Addition of statistics on rN (longer calculations)

Found cycles (  is eliminated and if b1 < 0 then  = -b1 is also omitted) :

Complete results for  and 
List of elements of results :

1. N
2. Number of lists of transitions computed (for cycle)
3. Time for computations
4. Minimum value of v(0) and description : (list of transitions, v(0), v(N) )
5. Number of times, we get n for "v = N - NbBits(v(0))" (starting from 0)
6. Average and deviation for v
7. Statistics on transitions
8. Number of times, we get n for "r = NbBits(rN)" (starting from 0)
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9. Average and deviation for r

1. 27
2. 312455
3. 8.385 s
4. 251 : ("110110111111001111000101010",251,244)
5. 156040,78398,38861,19543,9806,4872,2481,1269,591,298,151,67,41,20,10,4,0,1,1,1

The number of tests = 312455 < 219 and max(v) = 20. The distribution is not exactly as expected, but the
difference is low. N = 27 is quite small too.
Graphics of Ln(rek) for k less than first time rk ≤ 10 :

Coefficient of correlation R ~ -0.9999622845169954
k ek rek Ak rek < Ak Rk qk

0 0 312455
1 156040 156415 157345 true 157349 1.007
2 78398 78017 78998 true 79474 1.017
3 38861 39156 39567 true 40310 1.032
4 19543 19613 19973 true 20567 1.053
5 9806 9807 10086 true 10582 1.084
6 4872 4935 5101 true 5509 1.128
7 2481 2454 2607 true 2917 1.195
8 1269 1185 1326 true 1581 1.295
9 591 594 661 true --- ---

10 298 296 345 true --- ---
11 151 145 182 true --- ---
12 67 78 96 true --- ---
13 41 37 56 true --- ---
14 20 17 30 true --- ---
15 10 7 16 true --- ---
16 4 3 8 true --- ---
17 0 3 4 true --- ---
18 1 2 4 true --- ---
19 1 1 3 true --- ---
20 1 0 2 true --- ---

6. 1.00099 and 1.41447

7. n tn=0 && dn=0 tn=0 && dn=1 tn=0 % dn=1 tn=1 && dn=0 tn=1 && dn=1 tn=1 % dn=1

0 0 0 0 0 0 312455 312455 100
1 0 0 0 0 0 312455 312455 100
2 58040 0 58040 0 0 254415 254415 100
3 58040 0 58040 0 0 254415 254415 100
4 58040 0 58040 0 58040 196375 254415 77.18
5 69473 11433 80906 14.13 46607 184942 231549 79.87
6 58040 22866 80906 28.26 70348 161201 231549 69.61
7 58040 22866 80906 28.26 81781 149768 231549 64.68
8 49259 50211 99470 50.47 123909 89076 212985 41.82



9 49259 50211 99470 50.47 118605 94380 212985 44.31
10 59588 46182 105770 43.66 99718 106967 206685 51.75
11 56609 49161 105770 46.47 97887 108798 206685 52.63
12 51065 54705 105770 51.72 107061 99624 206685 48.2
13 61721 53654 115375 46.5 94723 102357 197080 51.93
14 61582 53793 115375 46.62 94794 102286 197080 51.9
15 56601 58774 115375 50.94 99839 97241 197080 49.34
16 63418 66237 129655 51.08 92788 90012 182800 49.24
17 64240 65415 129655 50.45 91354 91446 182800 50.02
18 68102 68280 136382 50.06 87698 88375 176073 50.19
19 68802 67580 136382 49.55 86831 89242 176073 50.68
20 68439 67943 136382 49.81 87862 88211 176073 50.09
21 76887 75585 152472 49.57 79492 80491 159983 50.31
22 76832 75640 152472 49.6 79685 80298 159983 50.19
23 75877 76595 152472 50.23 80471 79512 159983 49.7
24 101336 102169 203505 50.2 55005 53945 108950 49.51
25 101675 101830 203505 50.03 54313 54637 108950 50.14
26 156415 156040 312455 49.93 0 0 0 0

8. 281,154199,157974,1
9. 1.5047 and 0.50177

The case  is representative of what is happening in the last steps of  because basically, we already only
have 312455 lists to test, which is little.

The results obtained for  are really very close to statistical theoretical modeling, without even using the
upper bound of the remaining count with 2 standard deviations.

We see a linear correlation coefficient between  and Ln( ) close to -0.99996, which is excellent (even for
values of  up to 10, which is lower than the theoretical convergence of the model which is limited to about 30)

For the last values of , the decrease is very mechanical, there is no real random phenomenon.

Partial results for  and 
We focus here on the distribution of  (the result indexed by 5) :

We get :
5. 949744268,474866457,237419589,118721656,59361118,29681430,14840202,7419771,3709525,1855537,927725

The number of tests = 1899474678 < 231 and max(v) = 34. The distribution is not exactly as expected, but the
difference is low. N = 40 is quite small too.
Graphics of Ln(rek) for k less than first time rk ≤ 10 :

Coefficient of correlation R ~ -0.9999822863394272
k ek rek Ak rek < Ak Rk qk

0 0 1899474678
1 949744268 949730410 949824504 true 949824508 1
2 474866457 474863953 474926840 true 474973899 1

N = 27 k

N = 27

k re k
re k

k

N = 40 b1 = 1
v0



3 237419589 237444364 237475559 true 237530546 1
4 118721656 118722708 118753000 true 118796107 1.001
5 59361118 59361590 59383145 true 59419863 1.001
6 29681430 29680160 29696204 true 29725360 1.002
7 14840202 14839958 14850975 true 14873597 1.002
8 7419771 7420187 7427683 true 7444524 1.003
9 3709525 3710662 3715541 true 3727732 1.005

10 1855537 1855125 1859183 true 1867740 1.007
11 927725 927400 930286 true 936617 1.01
12 463941 463459 465626 true 470257 1.014
13 231999 231460 233091 true 236514 1.02
14 115918 115542 116692 true 119243 1.029
15 57567 57975 58450 true 60326 1.041
16 28996 28979 29469 true 30668 1.058
17 14479 14500 14829 true 15698 1.083
18 7377 7123 7490 true 8114 1.12
19 3566 3557 3730 true 4252 1.174
20 1744 1813 1897 true 2272 1.254
21 930 883 991 true --- ---
22 436 447 500 true --- ---
23 211 236 265 true --- ---
24 110 126 148 true --- ---
25 63 63 85 true --- ---
26 31 32 47 true --- ---
27 18 14 27 true --- ---
28 8 6 14 true --- ---
29 4 2 7 true --- ---
30 1 1 3 true --- ---
31 0 1 2 true --- ---
32 0 1 2 true --- ---
33 0 1 2 true --- ---
34 1 0 2 true --- ---

Looking at these results for , we see the numbers of occurrences for  which are at the end "31,18,8,4,1,0,0,1"
and so there is 1 value of  which falls outside the interval with 3 bits less than what is theoretically expected. Thus,
the gap is insignificant.

VII. Study of the divergence towards infinity

The method used to have the minimum value of  thanks to the statistical distribution of the  is very robust.

We will proceed in the same way to study a possible divergence
We will count or at least upper bound the number of lists for which  for all  (  for ). As a
reminder, proving the theorem is equivalent to identifying the cycles and proving that there is no divergence
towards infinity for , then for 
We will eliminate lists for which there are potential cycles from  less than the minimum value of a trivial cycle
We will conclude with the statistical distribution to prove that there can be no divergence
We will verify the consistency with the records of "altitude flight" (glide)
We will detail the results of my completely useless test of the standard sequence for  pour 
We will add the possibility of testing the sequence

N = 40 v0
v0

v0 v0

vn > v0 n vn < v0 v0 < 0

v u
v0

v0 < 240 b1 = 1



1. The number  of transition lists of length  such as, for  for , is less than or equal to 

We are interested in transition lists L of length  such that, for all ,  (  for  if )
because :

Thanks to the "Theorem 0" (paragraph VI-2), they each characterize a minimum solution  (bijection)
and it is only these values of  that must be tested to verify the sequence by calculation up to . We are
sure to do the minimum of calculations.
We then also have the distribution of the , new element for the reasoning. Indeed, the probability that

 is  and their number therefore tends towards .

These lists are easily obtained thanks to the boundary transition list JGL( ), already defined above in the
document (sections IV and V).
At each transition  (which is indexed from 0), it is simply necessary that the number of "type 1" transitions
of L is greater than or equal to that of JGL( ) (which is indexed from 1).
Compared to the previous section where it was a matter of finding cycles, this time, the value of  does not
necessarily correspond to an "approximation" of  and the number of "type 1" transitions is not limited and
can therefore be equal to .
We can easily calculate the exact number of  but an upper bound (even wide) allows a statistical
reasoning.

Method 1 : A recursion is used as for cycles, with no upper limit for , this would also make it possible to
generate the transition lists and to perform the processing. The downside is that it's slow.
Javascript code not available in this document.
Method 2 : We use the same method as for cycles, method with memorization of the number of lists  for
a length  and for a given number  of "type 1" transitions (without upper limit for ).

We have :

 for 
The elements are constructed for  from those of  as follows :

 for 
 +=  for  (adding a "type 1" transition is always possible)
 +=  for  (possible addition of a transition of "type 0")

The number of lists that interests us is 

We do not generate the lists but it is much faster.

We have the exact number but it's still a result by induction, we don't have a direct formula.

Javascript code not available in this document.

Length N : 17  Try

We get the following results :

10 ~ 26 ~ 20.6×N ~ 2N-4 = 64
17 ~ 212.0458 ~ 20.7086×N ~ 2N-4.9542 = 4228
20 ~ 214.7381 ~ 20.7369×N ~ 2N-5.2619 = 27328
30 ~ 223.6064 ~ 20.7869×N ~ 2N-6.3936 = 12771274
40 ~ 232.5761 ~ 20.8144×N ~ 2N-7.4239 = 6402835000
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50 ~ 241.764 ~ 20.8353×N ~ 2N-8.236 = 3734259929440
60 ~ 250.977 ~ 20.8496×N ~ 2N-9.023 = 2216134944775156
68 ~ 258.3377 ~ 20.8579×N ~ 2N-9.6623 = 364249198012174112
69 ~ 259.2538 ~ 20.8588×N ~ 2N-9.7462 = 687342103066248112
70 ~ 260.1068 ~ 20.8587×N ~ 2N-9.8932 = 1241503538986719152
80 ~ 269.4443 ~ 20.8681×N ~ 2N-10.5557 = 803209913882910595105
90 ~ 278.7507 ~ 20.875×N ~ 2N-11.2493 = 508520069189622659715764
100 ~ 287.9674 ~ 20.8797×N ~ 2N-12.0326 = 302560669500543257546172187

Method 3 : We upper bound the number of lists thanks to Catalan's triangle[5][6]

As for the cycles, we can create a diagram by representing the number of "type 1" transitions on the vertical axis.
Transition lists are then paths with movements upward or to the right (toward the North or toward the East). The
valid transition lists are those that remain above the JGL boundary and end after  steps at the diagonal points (on
the line of equation ) above the one corresponding to JGL( ).

In the diagram below :
The blue line represents the boundary JGL
The green line corresponds to a valid transition list because it is always above JGL
The black line corresponds to the boundary for the Catalan's triangle
Green dots are the end points of valid transition lists
The blue dots are the end points of the transition lists that are not valid but which are for the Catalan's
triangle
The black dots are the end points of the transition lists that are not valid even for the Catalan's triangle

0

As the boundary JGL is always "above" the diagonal, the constraint is more restrictive (perhaps by reversing the
axes relative to the conventions)

Nonetheless,  with , numbers of the Catalan's triangle

We have the formula for  :  and 

Or for  :  with the old combination notation and 

N
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Then 

We have a telescoping of terms and

According to the study made in the paragraph VI-4-1-3, , for , which is a very loose
upper bound (in the absence of an equivalence).

 for .

2. Candidate transition lists to eliminate

The transition lists for which there are potential cycles from values of  less than the minimum value of a trivial
cycle, are part of the lists counted in the previous paragraph.

However, their solutions  (minimum or not) will inevitably lead to a cycle and do not represent a possibility of
divergence towards infinity. So you have to eliminate them.

In the case of the standard Syracuse sequence, there is only one cycle for  (of length 2 consisting of values 1 and
2) and the "10..." or "01..." lists that would lead to the cycle for  are eliminated because the JGL boundary list
begins with "11", which imposes  for all candidate lists of transitions (for which  for all ). So there
is no problem.

For the same reason, the trivial cycle of length 2 for  from , for  is eliminated with JGL structure
and constraint on the list.

On the other hand, in the case , the trivial cycle of length 1 with  is not eliminated because the
transition list is only 1 i.e. "1..."

Let's now study these different possibilities for , based on the results of tests of the sequence for

We limit ourselves to cases where  and  are coprime, 
It is enough to test, for each trivial cycle, if, from a value  lower than the minimum value of the cycle , we can
reach this cycle because in such a case, we have  for all .

The table lists all these cases.

Table structure :
 (minimum value of the cycle)  (value from which this cycle can be reached)

For  See/Hide results

Results at the end of the document
See the results

For  See/Hide results

Results at the end of the document
See the results

We can note that the cases are very rare and only represent a few lists at most (nevertheless 71 lists for )
and only for some values of .

We can also remove all the possibly remaining lists that have as their solution the minimum value of a trivial
cycle... which adds only a few lists
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3. Conclusion about the existence of divergences towards infinity

In paragraph VI-4-4, we obtained an upper bound of the number of  which was very close to  for the

study of the cycles.

Using exactly the same statistical reasoning, this time with all the transition lists of length  which allow to have
 for all , we have :

If , then by taking into account the  last steps, we are sure that the number of
remaining lists is less than 30.

Moreover, as we have the same upper bound for  and  by , it can be said that :

All values of , from which we could have  for all , verify  for 
 and for .

Let's make a simple proof by contradiction :

Assume that there exists a value  for which the  sequence diverges.

Then, there exists a value  for which  for all  with 
This allows us to consider the case of the transition lists studied previously for a length greater than  of which 
should always be the solution of one of them, regardless of the envisaged length (this eliminates the elements for

 such as ).

It is enough to take  (for example, there is no need to search the minimum value of  with ).

We then have the minimum value of all these lists of transitions which should be greater than 
(with a very large margin)

Thus, we have a contradiction; it is therefore impossible

There is no divergence to infinity for .

4. Consistency with the records of "altitude flight" (glide)

We call , length of a "altitude flight" (glide), the number of terms for which .
Then  is such that for all ,  and 
We call a "record" for  if for any value less than , the "altitude flight" (glide) is lower than that of 

In Eric Roosendaal's document[7], we can find the list of records.

We take back this list and in this table, for each record, we put the number  in the form  and we calculate the
flight time  for  (instead of ) and if  then  is well above the minimum bound  (and therefore
it is consistent)

We also calculate  ~  and we see that  is close to , then there is  step difference for the record
compared to a simple division by 2 of the number of lists at each step, which confirms the modeling and the very
mechanical and absolutely non-random nature.

Index
 for  for
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61.9161

33 1614 1236472189813512351 60.1009 990 39.6 true
~ 2928.9491 ~

20.9383×N ~ 2N-

61.0509
61.0509 0.95

32 1575 180352746940718527 57.3236 966 38.64 true
~ 2906.1832 ~

20.9381×N ~ 2N-

59.8168
59.8168 2.4932

31 1471 118303688851791519 56.7153 902 36.08 true
~ 2845.4672 ~

20.9373×N ~ 2N-

56.5328
56.5328 -0.1825

30 1445 1008932249296231 49.8418 886 35.44 true
~ 2830.2837 ~

20.9371×N ~ 2N-

55.7163
55.7163 5.8745

29 1187 739448869367967 49.3934 728 29.12 true ~ 2680.6457 ~
20.935×N ~ 2N-47.3543 47.3543 -2.0391

28 1177 70665924117439 46.0061 722 28.88 true
~ 2675.0009 ~

20.9349×N ~ 2N-

46.9991
46.9991 0.993

27 1161 31835572457967 44.8557 712 28.48 true
~ 2665.4982 ~

20.9347×N ~ 2N-

46.5018
46.5018 1.6461

26 1122 13179928405231 43.5834 688 27.52 true
~ 2642.7422 ~

20.9342×N ~ 2N-

45.2578
45.2578 1.6744

25 988 2081751768559 40.9209 606 24.24 true ~ 2565.145 ~
20.9326×N ~ 2N-40.855 40.855 -0.0659

24 897 898696369947 39.709 550 22 true
~ 2512.0933 ~

20.9311×N ~ 2N-

37.9067
37.9067 -1.8023

23 892 12235060455 33.5103 547 21.88 true ~ 2509.2836 ~
20.931×N ~ 2N-37.7164 37.7164 4.2061

22 729 2788008987 31.3766 447 17.88 true
~ 2414.6802 ~

20.9277×N ~ 2N-

32.3198
32.3198 0.9432

21 706 1827397567 30.7671 433 17.32 true
~ 2401.4799 ~

20.9272×N ~ 2N-

31.5201
31.5201 0.753

20 649 1200991791 30.1616 398 15.92 true
~ 2368.3885 ~

20.9256×N ~ 2N-

29.6115
29.6115 -0.5501

19 644 217740015 27.698 395 15.8 true
~ 2365.5739 ~

20.9255×N ~ 2N-

29.4261
29.4261 1.7281

18 613 63728127 25.9254 376 15.04 true
~ 2347.6308 ~

20.9246×N ~ 2N-

28.3692
28.3692 2.4438

17 502 56924955 25.7626 308 12.32 true ~ 2283.4323 ~
20.9202×N ~ 2N-

24.5677 -1.1949



24.5677

16 486 26716671 24.6712 298 11.92 true
~ 2273.9535 ~

20.9193×N ~ 2N-

24.0465
24.0465 -0.6247

15 476 20638335 24.2988 292 11.68 true ~ 2268.3451 ~
20.919×N ~ 2N-23.6549 23.6549 -0.6439

14 468 13421671 23.6781 287 11.48 true
~ 2263.5931 ~

20.9184×N ~ 2N-

23.4069
23.4069 -0.2712

13 401 8088063 22.9474 246 9.84 true
~ 2224.9755 ~

20.9145×N ~ 2N-

21.0245
21.0245 -1.9229

12 365 1126015 20.1028 224 8.96 true
~ 2204.2689 ~

20.9119×N ~ 2N-

19.7311
19.7311 -0.3717

11 298 1027431 19.9706 183 7.32 true
~ 2165.7531 ~

20.9058×N ~ 2N-

17.2469
17.2469 -2.7237

10 287 626331 19.2566 176 7.04 true ~ 2159.0993 ~
20.904×N ~ 2N-16.9007 16.9007 -2.3559

9 282 381727 18.5422 173 6.92 true ~ 2156.314 ~
20.9035×N ~ 2N-16.686 16.686 -1.8562

8 269 362343 18.467 165 6.6 true
~ 2148.7835 ~

20.9017×N ~ 2N-

16.2165
16.2165 -2.2505

7 267 270271 18.044 164 6.56 true
~ 2147.9135 ~

20.9019×N ~ 2N-

16.0865
16.0865 -1.9575

6 220 35655 15.1218 135 5.4 true
~ 2120.6796 ~

20.8939×N ~ 2N-

14.3204
14.3204 -0.8014

5 171 10087 13.3002 105 4.2 true
~ 292.6731 ~

20.8826×N ~ 2N-

12.3269
12.3269 -0.9733

4 132 703 9.4574 81 3.24 true
~ 270.2925 ~

20.8678×N ~ 2N-

10.7075
10.7075 1.2501

3 96 27 4.7549 59 2.36 true ~ 249.977 ~ 20.8471×N

~ 2N-9.023 9.023 4.2681

2 11 7 2.8074 7 0.28 true ~ 23.7004 ~ 20.5286×N

~ 2N-3.2996 3.2996 0.4922

1 6 3 1.585 4 0.16 true ~ 21.585 ~ 20.3963×N

~ 2N-2.415 2.415 0.83

5. My own verification of the sequence for  with 
Even if it has no interest, with my own computer resources, I was able to test Syracuse sequence up to

It is enough to test 6402835000 transition lists (0.58% of ) in 49778 seconds or just a little less than 14 hours

n £ 240 b1 = 1

n £ 240 = 1099511627776
240



(without additional statistics) with an Intel(R) Core(TM) i5-1035G1 processor, Google Chrome "Version
119.0.6045.160 (Official Build) (64 bits)", with the JavaScript program included in this file, and we obtain the
following final result.

The verification is performed on 1295 processes that could be launched in parallel on as many computers (their
duration is not really balanced, ranging from 9 to 250 seconds, with an average of around 39 seconds).

Here are the test results after removing a visualization and a modeling of the behavior of lists having the same
number of "type 1" transitions :
Global results for some parallel processes

n1 : first value of n such as v(N+n) < v(0)
n2 : first value of n such as v(N+n) = 1

1. N
2. Number of lists of transitions computed (above JGL(40))
3. Time for computations
4. Minimum value of v(0) and description : (list of transitions, v(0), v(N) , n1)
5. Number of times, we get n for "v = N - NbBits(v(0))" (starting from 0)
6. Average and deviation for v
7. n1Max = Maximum number for n1
8. Description of a solution for n1Max : (list of transitions, v(0), v(N), n1)
9. Average and deviation for n1

10. Number of times, we get n for n1 (starting from 0)

1. 40
2. 6402835000
3. 49778.090999999986 s
4. 27 : ("1101111101011011101111010011101101111110",27,1822,19)
5. 3201415313,1600712335,800351093,400180065,200086844,100044150,50022007,25011669,12505491,625

The number of tests = 6402835000 < 233 and max(v) = 36. The distribution is not exactly as expected, but
the difference is low. N = 40 is quite small too.
Graphics of Ln(rek) for k less than first time rk ≤ 10 :

Coefficient of correlation R ~ -0.999984102568291
k ek rek Ak rek < Ak Rk qk

0 0 6402835000
1 3201415313 3201419687 3201577535 true 3201577539 1
2 1600712335 1600707352 1600823005 true 1600901941 1
3 800351093 800356259 800433693 true 800531002 1
4 400180065 400176194 400234710 true 400322098 1
5 200086844 200089350 200128105 true 200201076 1.001
6 100044150 100045200 100072965 true 100128848 1.001
7 50022007 50023193 50042604 true 50084449 1.001
8 25011669 25011524 25025741 true 25056391 1.002
9 12505491 12506033 12515764 true 12538220 1.003

10 6252597 6253436 6260089 true 6276205 1.004
11 3127616 3125820 3131719 true 3143126 1.005
12 1564356 1561464 1566445 true 1575122 1.008
13 781178 780286 783231 true 790084 1.011



14 390764 389522 391909 true 396833 1.015
15 195203 194319 196009 true 199690 1.022
16 97093 97226 98041 true 100752 1.031
17 48690 48536 49236 true 51025 1.045
18 24612 23924 24708 true 25978 1.064
19 12160 11764 12271 true 13326 1.091
20 5846 5918 6098 true 6908 1.131
21 2944 2974 3112 true 3635 1.191
22 1508 1466 1596 true 1954 1.28
23 723 743 809 true --- ---
24 358 385 426 true --- ---
25 187 198 231 true --- ---
26 101 97 127 true --- ---
27 46 51 68 true --- ---
28 27 24 39 true --- ---
29 10 14 21 true --- ---
30 6 8 14 true --- ---
31 1 7 9 true --- ---
32 0 7 8 true --- ---
33 0 7 8 true --- ---
34 3 4 8 true --- ---
35 2 2 6 true --- ---
36 2 0 3 true --- ---

6. 1 and 1.4142
7. 510
8. ("1101111111110101111111011011011110101010",898696369947,168287090689819,510)
9. 18.67363 and 19.45287

In another test, having checked "Add transition statistics", we obtain the additional results :

n tn=0 && dn=0 tn=0 && dn=1 tn=0 % dn=0 tn=1 && dn=0 tn=1 && dn=1 tn=1 % dn=1

0 0 0 0 0 0 6402835000 6402835000 0
1 0 0 0 0 0 6402835000 6402835000 0
2 1100914210 0 1100914210 100 0 5301920790 5301920790 0
3 1100914210 0 1100914210 100 0 5301920790 5301920790 0
4 1100914210 0 1100914210 100 1100914210 4201006580 5301920790 20.76
5 1298043035 197128825 1495171860 86.81 903785385 4003877755 4907663140 18.41
6 1100914210 394257650 1495171860 73.63 1413313120 3494350020 4907663140 28.79
7 1100914210 394257650 1495171860 73.63 1610441945 3297221195 4907663140 32.81
8 944159584 833631669 1777791253 53.1 2469110961 2155932786 4625043747 53.38
9 944159584 833631669 1777791253 53.1 2388362563 2236681184 4625043747 51.63
10 1116734963 745348718 1862083681 59.97 2002749808 2538001511 4540751319 44.1
11 1042500750 819582931 1862083681 55.98 2067140986 2473610333 4540751319 45.52
12 909215511 952868170 1862083681 48.82 2337924822 2202826497 4540751319 51.48
13 1105114649 865318617 1970433266 56.08 2024375455 2408026279 4432401734 45.67
14 1083888420 886544846 1970433266 55 2052470093 2379931641 4432401734 46.3
15 979301131 991132135 1970433266 49.69 2237514358 2194887376 4432401734 50.48
16 1015319573 1081236081 2096555654 48.42 2209784778 2096494568 4306279346 51.31
17 1035277679 1061277975 2096555654 49.37 2169707805 2136571541 4306279346 50.38
18 1072345116 1069003709 2141348825 50.07 2127098206 2134387969 4261486175 49.91



19 1083008126 1058340699 2141348825 50.57 2107199802 2154286373 4261486175 49.44
20 1068669506 1072679319 2141348825 49.9 2130918084 2130568091 4261486175 50
21 1114085103 1095388782 2209473885 50.42 2079044022 2114317093 4193361115 49.57
22 1106560886 1102912999 2209473885 50.08 2090302131 2103058984 4193361115 49.84
23 1110419363 1099054522 2209473885 50.25 2090751921 2102609194 4193361115 49.85
24 1150613143 1141891433 2292504576 50.19 2050398491 2059931933 4110330424 49.88
25 1147427588 1145076988 2292504576 50.05 2053742476 2056587948 4110330424 49.96
26 1147941766 1144562810 2292504576 50.07 2052871322 2057459102 4110330424 49.94
27 1204154994 1203020567 2407175561 50.02 1996970067 1998689372 3995659439 49.97
28 1203816053 1203359508 2407175561 50 1997427835 1998231604 3995659439 49.98
29 1227550009 1226736537 2454286546 50.01 1973660230 1974888224 3948548454 49.98
30 1227108369 1227178177 2454286546 49.99 1974351939 1974196515 3948548454 50
31 1227110080 1227176466 2454286546 49.99 1974327851 1974220603 3948548454 50
32 1271523744 1271812897 2543336641 49.99 1929903958 1929594401 3859498359 50
33 1271593007 1271743634 2543336641 49.99 1929872565 1929625794 3859498359 50
34 1271625565 1271711076 2543336641 49.99 1929768012 1929730347 3859498359 50
35 1351652483 1351659738 2703312221 49.99 1849770140 1849752639 3699522779 50
36 1351627230 1351684991 2703312221 49.99 1849785835 1849736944 3699522779 50
37 1395619940 1395679198 2791299138 49.99 1805788718 1805747144 3611535862 50
38 1395668625 1395630513 2791299138 50 1805755428 1805780434 3611535862 49.99
39 1395665096 1395634042 2791299138 50 1805754591 1805781271 3611535862 49.99

Everything is consistent !

6. Test of the sequence

When you check the "Statistics on n1", which is necessary to test the sequence, we also have in the results a
visualization and a modeling of the behavior of the lists having the same number of "type 1" transitions.
This statistical approach is less satisfactory than the one chosen in this document. It is providedt for reference
only.

Even if it is completely useless, this program is designed for parallel execution by partitioning the calculations,
even if they are performed on the same computer.

Choose the value of b1 :  OK  (odd relative integer)

Sequence test for : See/Hide code  See/Hide code for results

 : 17  All tests Random tests during 1 minute  Try Stop  Previous results
Statistics on  only (calculations are much more short, no validation of the sequence)
Statistics on n1 (necessary for the validation of the sequence)
Adding statistics on n2 (interesting to detect cycles if b1 ≠ 1)
Adding transition statistics (for )
Adding statistics on rN (longer calculations)

Found cycles (  is eliminated and if b1 < 0 then  = -b1 is also omitted) :

VIII. General case, in particular 

1. Case  odd
Thus, we consider the sequence defined with  odd :

v0 < 2N

N
v0

n < N

v0 = 0 v0

5n+1

a3
b1



1. Case 
We can reduce it to the case  by also changing  in its opposite

2. Case 

1. Case 
This case is already examined in detail in this document

2. Case 
There is no theoretical obstacle to proving similar theorem.

We should first verify the sequence up to .

For , we find 737 as the maximum length of one cycle for  and .
Then, the reasoning remains valid with 
Even if it is necessary to increase  which is initially equal to 17, it becomes unrealistic to verify the
sequence for  with the current computer resources (in 2024), since we have only done a
single verification for the standard Syracuse sequence up to  (which, by the way, is useless for the
proof of the theorem).

3. Case 
The value of  can only be changed here : 3 5 and the maximum number of steps for the study of
convergence (possible divergence for ) : 450

Note : To indicate that , the background color of the document is "light gray". All "Try" are
operational, only the results are different.

When trying to test the sequence, we realize that there seems to be a problem because with , for 
, we do not have a cycle after 10000 steps, which points towards a possible divergence.

The maximum number of steps can be lowered to 450 after noticing that there was no cycle of length greater
than 7 for 
The value of  doesn't really matter here, we will take , because only the trivial cycles are different.

We find these numbers of cases where there seems to be a divergence for  and  :

Maximum number of transitions Number of cases without convergence
50 523009
100 520747
200 519433
400 519296
425 519296
450 519293
500 519293
600 519293
800 519293
1000 519293

ì

í

î

ï

ï

ï

ï

ï

ï

v0 > 0

vn + 1 =
vn
2  if v n  is even (transition of type 0)

vn + 1 =
a3v n +b1

2  if vn  is odd (transition of type 1)

a3 < 0
a3 > 0 b1

a3 = 3

b1 £ 1024

b1 > 1024

2N0 + B1

1024 < b1 < 2048 b1 = 1699 v0 = 23
N0 = 17

N0

b1 > 251

268

a3 = 5
a3

a3 = 5
a3 = 5

b1 = 1 v0 = 7

b1 = 1
b1 b1 = 1

b1 = 1 N0 = 20



2000 519293

We will note that the number seems to be constant from a maximum number of transitions greater than 450.

This number is not very significant because we only perform  tests.

The construction of the JGL boundary is identical, with patterns. We notice that the pattern of length 339
seems to be the most suitable (even if it appears less than the pattern of 1054 for the case )

The number of transition lists for cycles is not upper bounded by the number of Dyck's words because this

time, it's less restrictive because  and   

However, we have :
For  and ,   
For  and ,   

It is enough to take  to be assured of these respective minimum values of cycle length.

Here are the results of the  tests for  and :

For the first time : more than 2000 steps are required to verify the conjecture for 7
Continue without displaying other such values
For 519293 values, the conjecture is not verified.
Values are :
7,9,11,21,23,25,29,31,35,37,39,41,45,47,49,53,55,57,59,61,63,67,69,71,73,75,77,79,81,85,87,89,91,93,95,99

Length Values
1 1 5 1; 3; 8; 4; 2
1 13 7 13; 33; 83; 208; 104; 52; 26
1 17 7 17; 43; 108; 54; 27; 68; 34

Then, to prove that there are no cycles other than the trivial cycles (for the values of 
which converge), there would be no difficulties. It is enough to revisit the method for , we assume the
result.

We are going to study the divergence towards infinity (for ).

To begin with, and as we had done for , we have a single list of transitions such as a cycle is reached
from a value lower than the minimum cycle value. This is  and the corresponding transition list.

As for cycles, the constraint for a transition list of length  to be such that  for all  is weaker
than for  and even for the Catalan's triangle (JGL boundary under the diagonal).

In the diagram below :
The blue line represents the boundary JGL
The green line corresponds to a valid transition list because it is always above JGL
The black line corresponds to the boundary for the Catalan's triangle
Green dots are the endpoints of valid transition lists
Black dots are the endpoints of transition lists that are not valid

2N0

2 = 219 = 524288

a3 = 3

X =
Ln2

Ln5 -Ln2
X

1+X
» 0.43 <

1
2

b1 > 0 N = 10790 Cy (N) = Cy (10790) » 210790 - 170.51 = 2N - 170.51

b1 < 0 N = 7804 Cy (N) = Cy (7804) » 27804 - 128.27 = 2N - 128.27

N0 = 20

220

2 = 219 = 524288 b1 = 1 N0 = 20

b1 v0

v0 < 2N0 + B1 = 220 + B1

a3 = 3

b1 = 1

a3 = 3
v0 = 5

N vn ³ v0 n £ N
a3 = 3



0

We will notice that we always have (regardless of the value of ) :
 if  if of "type 0" in JGL (or JGL[ ] = '0') for 

 if  if of "type 1" in JGL (or JGL[ ] = '1') for  with , the number of
transition lists of length , reaching exactly the JGL boundary in 

Then, as long as the boundary is "vertical" (  of "type 1"),  and then  in all
cases, therefore  is an increasing function, as we might have suspected by looking at the possible
paths in the previous diagram.

The previous program for calculating  is functional but this implementation is even more general.
In the results  is such that 

See/Hide code

Test for the maximum value of  : 5000  for a boundary slope of Ln(2)/Ln(5)  Try

We get the following results with  i.e. a "slope" equal to  (not to be taken in the strict sense of

that of a straight line, but as an increase in relation to the length of the path) :

N p Up(N)
1 1 ~20 ~ 20×N ~ 2N-1

2 1 ~21 ~ 20.5×N ~ 2N-1

3 1.415037 ~21.584963 ~ 20.528321×N ~ 2N-1.415037

4 1.415037 ~22.584963 ~ 20.646241×N ~ 2N-1.415037

5 1.678072 ~23.321928 ~ 20.664386×N ~ 2N-1.678072

6 1.678072 ~24.321928 ~ 20.720321×N ~ 2N-1.678072

7 1.870717 ~25.129283 ~ 20.732755×N ~ 2N-1.870717

8 1.870717 ~26.129283 ~ 20.76616×N ~ 2N-1.870717

9 1.870717 ~27.129283 ~ 20.792143×N ~ 2N-1.870717

10 1.944718 ~28.055282 ~ 20.805528×N ~ 2N-1.944718

20 2.170575 ~217.829425 ~ 20.891471×N ~ 2N-2.170575

30 2.2812 ~227.7188 ~ 20.92396×N ~ 2N-2.2812

40 2.349178 ~237.650822 ~ 20.941271×N ~ 2N-2.349178

a3

Up (N+1) = 2Up (N) tN N+1 N > 0
Up (N+1)= tN N+1 N > 0 _EN(_N)

N N

tN Up (N) = 1 Up (N+1) > Up (N)
Up (N)

Up (N)
p Up (N) = 2N - p

N

a3 = 5 Ln2
Ln5



50 2.387105 ~247.612895 ~ 20.952258×N ~ 2N-2.387105

60 2.410317 ~257.589683 ~ 20.959828×N ~ 2N-2.410317

70 2.433388 ~267.566612 ~ 20.965237×N ~ 2N-2.433388

80 2.448684 ~277.551316 ~ 20.969391×N ~ 2N-2.448684

90 2.45861 ~287.54139 ~ 20.972682×N ~ 2N-2.45861

100 2.469113 ~297.530887 ~ 20.975309×N ~ 2N-2.469113

200 2.499393 ~2197.500607 ~ 20.987503×N ~ 2N-2.499393

300 2.504566 ~2297.495434 ~ 20.991651×N ~ 2N-2.504566

400 2.505715 ~2397.494285 ~ 20.993736×N ~ 2N-2.505715

500 2.506021 ~2497.493979 ~ 20.994988×N ~ 2N-2.506021

600 2.506105 ~2597.493895 ~ 20.995823×N ~ 2N-2.506105

700 2.50613 ~2697.49387 ~ 20.99642×N ~ 2N-2.50613

800 2.506138 ~2797.493862 ~ 20.996867×N ~ 2N-2.506138

900 2.50614 ~2897.49386 ~ 20.997215×N ~ 2N-2.50614

1000 2.506141 ~2997.493859 ~ 20.997494×N ~ 2N-2.506141

2000 2.506141 ~21997.493859 ~ 20.998747×N ~ 2N-2.506141

3000 2.506141 ~22997.493859 ~ 20.999165×N ~ 2N-2.506141

4000 2.506141 ~23997.493859 ~ 20.999373×N ~ 2N-2.506141

5000 2.506141 ~24997.493859 ~ 20.999499×N ~ 2N-2.506141

6000 2.506141 ~25997.493859 ~ 20.999582×N ~ 2N-2.506141

7000 2.506141 ~26997.493859 ~ 20.999642×N ~ 2N-2.506141

8000 2.506141 ~27997.493859 ~ 20.999687×N ~ 2N-2.506141

9000 2.506141 ~28997.493859 ~ 20.999722×N ~ 2N-2.506141

10000 2.506141 ~29997.493859 ~ 20.999749×N ~ 2N-2.506141

20000 2.506141 ~219997.493859 ~ 20.999875×N ~ 2N-2.506141

30000 2.506141 ~229997.493859 ~ 20.999916×N ~ 2N-2.506141

40000 2.506141 ~239997.493859 ~ 20.999937×N ~ 2N-2.506141

50000 2.506141 ~249997.493859 ~ 20.99995×N ~ 2N-2.506141

Remember that  is such that 

It is of course impossible to draw conclusions from just a few values, but it would seem that  diverges
when the "slope" of the boundary is greater than 0.50 and  converges when the "slope" is less than 0.48 (by
considering the valid paths as those "above" the boundary)

Even though there are many variants of the Catalan's triangle, I neither have sufficient mathematical
knowledge nor any reference books, so I do not know if the case of any boundary has already been studied
to have a formal expression (if it exists) of the quantity we are looking for, sum of the numbers of
possibilities to reach locations on the opposite diagonal (points in the previous diagram).

Let's try to find a simpler method of minoration of  to prove that there exists  such that
 (for all  sufficiently large) because then it will be easy to conclude for divergence due to

the distribution of values .

According to the results of the previous tests, if we have a convergence for a "slope" less than 0.48 and that

  0.43, this means that we have a comfortable margin to choose a boundary for which we can minor

more easily .

p Up (N) = 2N - p

p
p

Up (N) l
Up (N) > 2N - l N

v0

Ln2
Ln5 »

Up (N)



The disadvantage of  is that it is not rational and even if there are patterns in the boundary, they do not

repeat themselves rigorously identically in sequence.

The idea is to approximate the boundary by a repetitive pattern.

To obtain a lower bound for the number of paths (or transition lists), it is enough to take an approximation

by excess of .

This was done in the previous sections (see paragraph IV-9 if we have properly checked  at the
beginning of this paragraph, light gray background for the document).

We find the "approximation"  which is too large because it is greater than 0.48, the next is 

 0.444... which is suitable. The advantage is that the pattern is small (rectangle 5 by 4) and that we will be
able to perform the exact calculations easily.

0

This gives this representation with the true JGL boundary in blue and the one with the pattern in red (the
black line will be used for the Catalan's trapezoids) :

0

Ln2
Ln5

Ln2
Ln5

a3 = 5

m
N =

1
2 = 0.5 4

9
»



Let  the number of transition lists of length  above the boundary with the previous pattern (rectangle

4×5 or "slope" of boundary ).

Let's be interested in the extracted sequence, , which corresponds to the pattern

If, for , we have  and 

Then for ,  with

If  had a limit  when  tends to infinity, then we would have  for  large enough

On the other hand, we have , then for  large enough, 

Let's express  from  :

To simplify, we note , the number of paths on the boundary (with the pattern) at the point with
coordinates 
With the pattern, we have the following very simple relations :

As  then we have a very large lower bound

Let’s express the quantity  by setting 

Therefore, 

 

  si  which will be justified later

By using the asymptotic equivalent  when  tends to 0

We have, if  tends to 0, which will be justified later :

UN N
4
9

U9 k

k > k0 U
9 ( k + 1 ) > 29 - ekU9 k U9 k0

= 29 k0 - l0

t > k0 U9 t >
t - 1
Õ

k = k0

29 - ekUk0
= 2

é

ë
êê 9 ( t - k0 ) -

t - 1
å

k = k0

ek

ù

û
úúU9 k0

= 2
é

ë
êê 9 ( t - k0 ) -

t - 1
å

k = k0

ek

ù

û
úú´29 k0 - l0 = 29 t - g (t)

g (t) = l0+
t - 1
å

k = k0

ek

g (t) l t U9 k > 29 k - l k > k0

UN < Up (N) k > k0 Up (9 k ) > 29 k - l

U
9 ( k + 1 ) U9 k

Ak , n

(5 k +n , 4 k +n)

U9 k + 1 = 2 U9 k-Ak , 0

U9 k + 2 = 2 U9 k + 1 = 22 U9 k-2 Ak , 0

U9 k + 3 = 2 U9 k + 2-Ak , 1 = 23 U9 k-4 Ak , 0-Ak , 1

U9 k + 4 = 2 U9 k + 3 = 24 U9 k-8 Ak , 0-2 Ak , 1

U9 k + 5 = 2 U9 k + 4-Ak , 2 = 25 U9 k-16 Ak , 0-4 Ak , 1-Ak , 2

U9 k + 6 = 2 U9 k + 5 = 26 U9 k-32 Ak , 0-8 Ak , 1-2 Ak , 2

U9 k + 7 = 2 U9 k + 6-Ak , 3 = 27 U9 k-64 Ak , 0-16 Ak , 1-4 Ak , 2-Ak , 3

U9 k + 8 = 2 U9 k + 7 = 28 U9 k-128 Ak , 0-32 Ak , 1-8 Ak , 2-2 Ak , 3

U
9 ( k + 1 ) = U9 k + 9 = 2 U9 k + 8 = 29 U9 k-256 Ak , 0-64 Ak , 1-16 Ak , 2-4 Ak , 3

Ak , 0 £ Ak , 1 £ Ak , 2 £ Ak , 3

U
9 ( k + 1 ) ³ 29 U9 k- ( 256 +64+16+4 ) Ak , 3 = 29 U9 k-340 Ak , 3

ek 29 U9 k-340 Ak , 3 = 29 - ekU9 k

29 U9 k

æ
èç1-

340 Ak , 3

29 U9 k

ö
ø÷ = 29 U9 k´2 -ek

Û 1-
340 Ak , 3

29 U9 k

= 2 -ek

Û Ln
æ
èç1-

340 Ak , 3

29 U9 k

ö
ø÷ = -ek Ln2

340 Ak , 3

29 U9 k

< 1

Ln ( 1+u ) = u u

340 Ak , 3

29 U9 k



  

We aim to upper bound  so we first upper bound  then lower bound 

Let’s upper bound  :

 is also the number of paths at the point with coordinates , since by increasing the
length of 1, we can only move upward or to the right (to stay above the boundary). Therefore, we must have
come from the left, from the point , which corresponds to 

Using the Catalan's trapezoids formula[6], as the boundary of the pattern is above the diagonal passing
through  (black line in the previous diagram), we can lower bound  by :

In fact, certainly due to the shape of the pattern (which differs from the diagonal only at the last step), it
would seem that, although this is not a proof (even if we might be able to adapt it to account for this
additional step) :

, the first values being , , , equality is

verified for 

And anyway, let's take as a very broad upper bound (from the trapezoids formula), by neglecting the second
term, which is indeed very large :

 and let's calculate an asymptotic equivalent of  for  large

enough with the approximation   .

for 
 after simplifications

By using   ,    and   , then

 after simplifications

  

Let's lower bound  :

The boundary with the pattern is below the diagonal (because ) then  is greater than the number

of paths above the diagonal (I really believe that I am reversing the customary conventions, but it is related

to )

By applying the same reasoning as in paragraph VII-1, it is easy to find that  for  even.

By applying the Stirling formula for   , we find :
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   = 

In conclusion, we can return to  because the assumptions are justified for the asymptotic equivalent of
 :

  , geometric sequence with common ratio

 therefore the series converges and the function  has a limit.

To summarize, by taking , we have  and   0.

Therefore , which is consistent with the results table that suggests a value
close to 

Given the previous relations that link  to  for , which do not affect the 10th decimal place

of  for , then  for all  (we can verify that this is also true for ).

And finally :  for all .

We will use the previous method (as in the case , previously detailed in paragraph VI-4-3) regarding
the distribution of  solutions of the transition lists, but this time by lower bounding the number of
remaining lists. It is actually while trying to test the robustness of the method that the case  was
considered.

At first glance, by simplifying the process, by dividing by 2 each time, we could have the minimum value of
 on 3 bits, like .

More rigorously, by setting  :

We can see  as a Bernouilli trial of parameter , optimal parameter for the application of

statistical results.

For the last transition :

If we consider , the number of times  (for the transition ) for all the  transition

lists, it is then a binomial distribution and  converges

towards the standard normal distribution (for  because ).

Moreover, we have P( ) = P( ) > 0.9999 (since in the tables of the standard normal distribution,
the value is 1.0000)

We can consider that we are in this case to lower bound the remaining number of , i.e. the number of
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 for the candidate transition lists. If that were not the case, it is not a problem since we will apply
the same reasoning for the previous transitions.

However   

Let  this lower bound of  and  the initial number of candidate lists.

If  then we can always use the convergence towards the standard normal distribution (because the
limit of use is close to ) and 

The inequality  does not allow for a lower bound but .

We could lower bound  by  if  for , the interval that interests us.

Let's quickly examine the sign of  :

        

As ,  on  and then, we can use the loxer bound :

, the lower bound by using the exponential,

which allows for a more straightforward chaining
We can apply exactly the same reasoning with the transition  with the same formalism, as long as the
number of remaining lists is sufficient.

We have 

However  =  because 

Therefore  =  = 

Starting again with the same formalism for , as long as we can use convergence towards the standard
normal distribution, we have :

 with 

This result can be proven by induction, the formula being verified for  and .

If we assume that it is true for , we prove that it is true for 

However  =  because 

Therefore , the property is verified

We can slightly improve the notation of  with the last upper bound in 

Let  such as , we lower bound  by a power of 2.

We are assured that , so we can use the formula related to convergence towards the standard normal
distribution.
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That is to say, when taking into account the  last transitions, the maximum relative error is 4% compared

to the approximated value , which means that the error is less than one "step" !

We can say, by analyzing the  last transitions, that the number of values of  is greater than
65536.

But we have just proven that, for all ,    in case 
As we set  such that : 
We therefore have,  and then , which means that the number of solutions  is
greater than  for all .

For , let , the set of minimum solutions  for all transition lists of length  such that
, we have  (because we are in the case  or )

The cardinality of  is greater than  and less than 
For all , we have  ⊂ , simply because the condition is more restrictive for .

We consider , fixed, for example 

Let's prove by contradiction that there exists at least one value  ∈ , for which there are an infinity of

values of  for which  ∈  :
Assume that for any element  of ,  is in a finite number of sets  for distinct values of  (which is

equivalent to saying that  reaches a trivial cycle), then, there exists , the maximum of  such that  ∈
. Since the cardinality of  is finite (less than ), then it exists , the maximum of all  for 

being in 

If we consider , then, for each value  of , we have , and therefore  ∉ .

Yet, since we necessarily have  ⊂ , then  = ∅, which contradicts the fact that the cardinality

of  is necessarily greater than , which concludes the proof.

Let  ∈ , such that  is in an infinity of sets , then we have no cycle from this value  (to be precise,

it would be necessary to remove the few values of  that reach a trivial cycle with  less than the minimum
value of the trivial cycle. These cases are rare and there are none in the case ) and therefore for all 
such that  ∈ ,  is different from the values  for  and such that  ∈ 
Let's prove by contradiction that  diverge to infinity :

Assume the opposite, then there would exist an upper bound  such that, for all , . But, if we
consider the infinite set of values of  such that  ∈ , as the values of  are distinct (no cycle from ),
then the finite number of possible values  gives the contradiction.
Perhaps the value  is one of them ?

For  and , there exists at least one value  from which the sequence  (  too)
diverges
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We can prove the same result for any value of , only trivial cycles change.

4. Case 

If we assume that the sequence diverges for a value  with  and , then there will necessarily be
a divergence for , the boundary being even less restrictive for the transition lists allowing for a
possible divergence.

2. Case  even
Thus, we consider the sequence defined as follows with  even :

1. Case 
We can reduce to the case  by also changing  to its opposite

2. Case  or  or 
Then  with 
As  is even, then the transition of "type 1" becomes 

The growth is at most equal to that of the standard Syracuse sequence, then we should have the same type of
theorem with "trivial cycles" and no divergence.

3. Case 
As  is even, then the transition of "type 1"" becomes 

The JGL boundary would be the "diagonal" (because the proportion of "type 1" transitions is ),

which we used in the case of the standard Syracuse sequence for the number of transition lists  and
, then we should have the same type of theorem with "trivial cycles" and no divergence.

4. Case 
By setting  with  and  is even,
then the transition of "type 1"" becomes  

If we assume divergence for the case , previously algorithmically explored, there would be values that
diverge.

IX. Appendices

1. "Theorem 1"

Let  the Syracuse sequence defined by :

b1
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Statement of Theorem 1 :

, , with  such as 

In other words, the relative difference between  and  can be as small as you want... and we have "almost" a
non-trivial cycle.

It would suffice to take  = 1 and  = 3 or any other value corresponding to the trivial cycle, this is why we add

We can call these numbers  "revolutionary" in that they nearly return to their starting point, , they made
a revolution after a very chaotic journey because at each transition, they are multiplied by about 3 or divided by 2
which can represent gigantic absolute variations.

I) Notations and definitions :

First, let's define some elements and specify some notations

a) The reduced sequence of Syracuse : 

As if  is odd,  is even by construction, it is interesting to perform the following transition directly.
The reduced Syracuse sequence groups this transition.

We will use the sequence  in the proof because if we prove "Theorem 1" for  then we will have proven it for the
standard Syracuse sequence 

b) 
We will set  where  represents the number of "type 1" transitions and  represents the number of "type
0" transitions

c) The value  = , with Ln the natural logarithm function

II) Proof

1) Idea of the proof :
We consider  with  which trajectory can be easily determined by .
We prove that  is suitable for particular pairs .

2) Study of the trajectory of  with  :
We prove by induction that : For all  such as ,  is odd and 
This means that the first  transitions  are of "type 1" and the transition  is of "type 0".
a) Let's verify the property for 

 is odd so the transition  is of "type 1"

so the property is true for 
b) Assume the property is true for  and show that it is true for 
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 is odd because  is even for all 

So,  which is odd

according to the property at rank 
By using the same reasoning, we obtain  which is odd...

And finally  by replacing  according to the
property at rank 
So  is odd and the transition  is also of "type 1", it is the first part of the property at rank 

And  which is the second part

of the property at rank  and this ends the proof by induction.

3) Let's prove that : If  with  then 
The first  transitions are of "type 0" and eliminate the factor .

So  and applying the previous property, the following  transitions are of "type 1" and

4) Study of the limit of  when  ® +∞

The convergence is actually very rapid because by using a first-order Taylor expansion at 0 of 

We then have : 

It is interesting to study the pairs  for which  ≈ 1

5) Case where   1

  1    0 (with Ln the natural logarithm function)

    (because )

Let's define  =   1,7095

Conclusion : We will now focus on   

6) Approximation of  by fractions

 is an irrational number (  ∈ ℝ \ ℚ).

It can be approximated as closely as desired by rational numbers.
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Among all the approximations, we can focus on the fractions  that correspond to the infinite continued

fraction expansion of  because the convergence towards  is rapid :

m d N m/d - x
1 1 2 -7.0951×10-1

2 1 3 2.9049×10-1

5 3 8 -4.2845×10-2

12 7 19 4.7744×10-3

41 24 65 -1.1780×10-3

53 31 84 1.6613×10-4

306 179 485 -1.4085×10-5

665 389 1054 2.7677×10-7

15601 9126 24727 -4.9171×10-9

31867 18641 50508 9.6119×10-10

79335 46408 125743 -1.9476×10-10

111202 65049 176251 1.3650×10-10

190537 111457 301994 -1.4274×10-12

10590737 6195184 16785921 2.0821×10-14

10781274 6306641 17087915 -4.7737×10-15

53715833 31421748 85137581 2.7256×10-16

171928773 100571885 272500658 -4.3877×10-17

225644606 131993633 357638239 3.1454×10-17

397573379 232565518 630138897 -1.1224×10-18

6189245291 3620476403 9809721694 6.5206×10-20

But  =  =  =  = 

That is :  = 

By taking the exponential of both sides, we have :

(1) :  = 

7) Reminder of a general theorem on continued fractions and application

According to the properties of continued fractions (source Wikipedia), we have the following theorem :

If (hn/kn) have for limit  then :  or 

The previous theorem on continued fractions, applied in our case, gives :

 and then  because the sequence ( ) is a strictly increasing,

unbounded sequence, i.e. 

By using a Taylor expansion at 0 of  in the expression (1), we have :
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In other words : ,  : 

8) Conclusion :

For the reduced sequence , by combining the results of 4) and 7), we can say with  and :

By definition of the limit,   > 0,  ( , ) ∈ ², with  and  such as 

We obviously have the result for the standard sequence of Syracuse  with  and  because
there are  additional transitions :

  > 0,  ( , ) ∈ ², with  and  such that 

9) Numerical results

NB : For ( , ) = (1, 1), we indeed find the trivial cycle with  = 1.

1 1 2 -7.0951×10-1 2 2 0 5×10-1

2 1 3 2.9049×10-1 6 8 3.33×10-1 3.33×10-1

5 3 8 -4.2845×10-2 248 242 2.42×10-2 8.33×10-2

12 7 19 4.7744×10-3 524160 531440 1.39×10-2 2.44×10-2

41 24 65 -1.1780×10-3 36893488147402326016 36472996377170786402 1.14×10-2 3.23×10-2

53 31 84 1.6613×10-4 19342813113834064647815168 19383245667680019896796722 2.09×10-3 5.59×10-3

306 179 485 -1.4085×10-5 9.98959536101118×10145 9.97938882337109×10145 1.02×10-3 2.57×10-3

665 389 1054 2.7677×10-7 1.93025830561934×10317 1.93034257116813×10317 4.37×10-5 1.10×10-4

We indeed have a precision better than .

The approximation  corresponds well to 
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The proof of this theorem is done in the standard case but it is generalized without any difficulty for any .
We can even generalize this theorem by taking any positive odd coefficient  instead of the restrictive case 3 by
considering :

with  and 

The statement of Theorem 1 becomes :

, , with  such as 

 to avoid trivial cycles

The proof is done with 

End of the proof of Theorem 1

2. Jacques BALLASI's conjecture

If we consider a transition list L of length  (different from that of the trivial cycle, i.e. 1010... and 01010...) and
vL, the only solution of the interval [0, 2N[, the minimum solution that follows L.

Then, if we consider the set SL of these N solutions for each list Li, circular permutation of L, then the maximum

of SL is in the interval [2N-1, 2N[.

This conjecture has been verified for all lists for  and also on a set of longer random lists.

But I don't have the formal proof, no reasoning by induction seems possible to me but I hope I am wrong! For
example, if we take the list L = "001110011111", and L0 = L + "0" = "0011100111110", the lists for which vL ≥
2N-1 are not in those of L0, it is the same for L = "1101100110000001000000010" or L =
"11000011111001001001101".

For , we can formulate and "verify" an analogous conjecture by eliminating all circular permutations of lists
containing the different cycles for this value of 
Testing my conjecture for a length of : 14  Rotate  See/Hide code
Testing my conjecture for random lists during 10  secondes Random Tests
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7. Document of Eric Roosendaal, in which we have the list of "altitude flight" (glides) records.

See the document in English : https:://www.ericr.nl/wondrous/glidrecs.html

XI. See also: Other documents

Remarks

I am a French speaker and the English version of the document was obtained in "my" very approximate English or
using the offline "Google Translate" appl.

Knowing that online translation is certainly much better and considering the very rapid evolution of translation
quality in general, it is certainly preferable to use online translation for the French part of the document.

HTML documents were written with the formal editing tools for the web that I have developed in the early 2000s
(perhaps even before the projects that gave rise to Mathjax), primarily for "Microsoft Internet Explorer".
The rendering has not been updated for over 15 years and the characteristics of browsers have changed somewhat
in the meantime, so there are a few inaccuracies in the placement of indices (which could be corrected)

It is necessary to add approximately 500 kilobytes of the JTMath library and common style and image files to
transform the native format.

You need to download a subset of the JTMath libraries.

You will then need to extract the files from the archive into the same directory as this document.

The conversion from HTML format to PDF format to obtain a static document further degrades the quality
(missing fraction lines) and increases the file size.

List of documents

Proof of Theorem 0, version 1, different proof
PDF in French
SHA256 : F9020212A09A4A95F14F1BF72E0F736E857C679C3E45EB90D500E65DFBF417A8
PDF in English
SHA256 : B3FB1B0A47CCE34A818C3E7D1A617E242F302057D1577A6EC409AAE4B4AC6DFB

Minimized function JBALLASI in Javascript (214 bytes)
SHA256 : D5FF4B50E36CB783D9AA0C01FF38B06A68822456B88155C9264A0C1444740095
ZIP archive of the subset of the JTMath library :
SHA256 : D1FCC2A1A87178114201E7FA6D887B60BBE7DD536FB00B0C1550C7B7515CBCE6
ZIP archive of symmetric encryptions programs with a secret key (in Javascript with NodeJS and in PHP)
SHA256 : B1B25F57052EE856F0FE678702766B6DB3989EC2AD2B38211B18ECDCE900C0C2
Version 3 : Proofs of theorems for the extensions of the Syracuse sequence :

DHTML + Javascript in French and English (without the minimized JTMath library)
SHA256 : 5B81434FFC2A667AAAFB31D71179ACAF8FD1BF882220D5FB072580A047D17F71
ZIP archive of DHTML + Javascript in French and English (without the minimized JTMath library)
SHA256 : 2561C0A513E0DA773AFCED3B780E15E5224D1A54DD862370C5A4EA3A0BB46CD0
ZIP archive of DHTML + Javascript in French and English (with the minimized JTMath library)
SHA256 : 290F4316673CED8E99A6AF8582888EBDC6C8BAF289572DD29BC01387A1EFD6B6
Static HTML in French
SHA256 : 820A515966D3A9B51B4A7E0071A01AA47ECF9F1D912A9FECAF639CF6A583DCB4
Static HTML in English
SHA256 : AABF71A8EDF4BE7BDDB054A5367DA6496F55C08F3FFB48510A6D6A57302C026F
Static HTML in French and second part in English
SHA256 : E1450175C4BC5FFA56527C494333E92DC77FFE3625B48FC0DB01AA8E7600AD30
Static HTML in English and second part in French
SHA256 : 391985F2E1C9D5736B1466DDBFD90FE80FBB32BBB4C31939539FC39917D56749
PDF in French
SHA256 : F726D065D2476FB1B67C158CBBF38FD8711EF4DF26B829F2010798D16E5088AD
PDF in English
SHA256 : 3741FC5A0C9373233FB991C8B6C71EE3C5EDE55E6FDD758073A15E2AFEE7CA63
PDF in French and second part in English
SHA256 : 8D02B7C994F8CC2DB0E170AE653F72303C3DC25A7BF30BA2E80982E01496DA4A

https://en.wikipedia.org/wiki/Catalan%27s_triangle


PDF in English and second part in French
SHA256 : 7033199AEB33D9D26A4AB8B12531FB8D3462A64CE7F93229B4ABC11A4D0B0446

Version 3.1 : Proofs of theorems for the extensions of the Syracuse sequence :
ZIP archive of DHTML + Javascript in French and English (without the minimized JTMath library)
SHA256 : 7EE4920F1D6323FBBC0F55FD34DC8583DAE2264173E31328D7FC42E41F5AB61A
ZIP archive of DHTML + Javascript in French and English (with the minimized JTMath library)
SHA256 : 51FCE61F35C63041F53FAA24BBCFC9696D84EAF1FBFD70B4327FFCD7B2A842B8
PDF of results (appendice for the two following documents) on the website https://www.bajaxe.com :
SHA256 : 4245BAA2E6D5CFBC4F6EEBA956013F59EC554AE3B057A948D1FA9A93065683AD
PDF in French
SHA256 : 2809A0F11AE1534FA020209885232422EEB1706242C3FD0E9D682EE04B874306
PDF in English

Updated additional information on the website : https://www.bajaxe.com

--------------- Jacques BALLASI ---------------

https://www.bajaxe.com/
https://www.bajaxe.com/

